
Operating System Concepts with Java – 7th Edition, Nov 15, 2006 Silberschatz, Galvin and Gagne ©2007

Chapter 5: CPU Scheduling

5.2 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Chapter 5: CPU Scheduling

p Basic Concepts
p Scheduling Criteria
p Scheduling Algorithms
p Multiple-Processor Scheduling
p Real-Time Scheduling
p Thread Scheduling
p Operating Systems Examples
p Java Thread Scheduling
p Algorithm Evaluation

5.3 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Basic Concepts

p CPU-I/O 버스트주기(burst cycle)
n cycle : CPU 실행(CPU burst) <--> I/O 대기(I/O burst)
n CPU burst 유형

p I/O bound program : 많은짧은 CPU burst 가짐
p CPU bound program : 적은아주긴 CPU burst 가짐

p CPU 스케줄러
n 단기스케줄러(short-term scheduler) : ready queue에서선택

FIFO(First-In First-Out)큐
우선순위큐

트리

연결리스트

장기 job scheduling
단기 CPU scheduling <=Focus
중기 swapping : Swap In, Swap Out

5.4 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Alternating Sequence of CPU And I/O Bursts

5.5 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Histogram of CPU-burst Times

Hyperexponential
distribution

I/O bound job

CPU bound job

일반적인 시스템에서,
다수의 짧은 CPU burst와 적은 수의 긴 CPU burst로 구성
=> 어떻게 스케쥴링할 것인가?

5.6 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

CPU Scheduler
p CPU Scheduler의역할

n Selects from among the processes in memory that are ready to
execute, and allocates the CPU to one of them

p CPU scheduling decision time
p running -> waiting (예:I/O request interrupt)
p running -> ready (예: time run out)
p waiting -> ready (예 : I/O 완료 interrupt)
p halt : non preemptive

p 1과 4에서만 Scheduling이발생할경우: nonpreemptive로
충분

p 모든경우에서 Scheduling이가능할경우 : preemptive

5.7 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

CPU Scheduler

n 선점(preemptive) 스케줄링
p 특수하드웨어(timer)필요
p 공유데이타에대한프로세스동기화필요

n 비선점(non preemptive) 스케줄링
p MS-Windows, 특수하드웨어(timer) 없음
p 종료또는 I/O까지계속 CPU점유

5.8 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Dispatcher

p Dispatcher의정의
n A module which gives control of the CPU to the process

selected by the short-term scheduler

p Dispatcher의역할
n switching context
n switching to user mode
n jumping to the proper location in the user program

p Dispatch latency
n Dispatcher가하나의프로세스를정지하고다른프로세스의
수행을시작하는데까지소요되는시간

5.9 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

CPU Scheduling의성능기준

p 이용률(CPU utilization) : 40% ~ 90%
n keep the CPU as busy as possible

p 처리율(throughput) : 단위시간당완료된프로세스갯수
n # of processes that complete their execution per time unit

p 반환시간(turnaround time) : system in -> system out 걸린시간
n amount of time to execute a particular process

p 대기시간(waiting time) : ready queue에서기다린시간
n amount of time a process has been waiting in the ready queue

p 응답시간(response time) : 대화형시스템에서첫응답까지의시간
n amount of time it takes from when a request was submitted until the first

response is produced, not output (for time-sharing environment)

5.10 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Scheduling Algorithms

n FCFS (First-Come First-Served)

n SJF (Shortest-Job-First)

p SRT (Shortest-Remaining-Time)

n Priority Scheduling
p HRN(Highest-Response-ratio Next

n RR (Round Robin)

n Multilevel Queue

n Multilevel Feedback Queue

5.11 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

First-Come, First-Served (FCFS) Scheduling

Process Burst Time
P1 24
P2 3
P3 3

p Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

n Waiting time for P1 = 0; P2 = 24; P3 = 27
n Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

선입 선처리(First-Come, First-Served) 스케줄링

5.12 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

FCFS Scheduling (Cont.)
Suppose that the processes arrive in the order

P2 , P3 , P1 .
p The Gantt chart for the schedule is:

n Waiting time for P1 = 6; P2 = 0; P3 = 3
n Average waiting time: (6 + 0 + 3)/3 = 3
n Much better than previous case.

p Convoy effect :
n FCFS 스케쥴링알고리즘(I/O Queue와 Read Queue를가진)에있어서 CPU-bound
프로세스(CPU를많이차지하는)와 I/O bound 프로세스(상대적으로 CPU를적게
사용하는)가있을때 CPU-bound 프로세스로인해 I/O bound 프로세스가짧은
CPU의할당만으로 JOB을완료할수있음에도불구하고,순서를기다림으로써
전반적인시스템성능이떨어지는효과

P1P3P2

63 300

5.13 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Shortest-Job-First (SJF) Scheduling

p SJF Scheduling의정의
n Associate with each process the length of its next CPU burst. Use

these lengths to schedule the process with the shortest time.

p Two schemes:
n nonpreemptive – once CPU given to the process it cannot be

preempted until completes its CPU burst.
n preemptive – if a new process arrives with CPU burst length less than

remaining time of current executing process, preempt. This scheme is
know as the
Shortest-Remaining-Time-First (SRTF).

p SJF is optimal – gives minimum average waiting time for a
given set of processes.

최소 작업 우선(Shortest-Job-First) 스케줄링

5.14 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

p SJF (non-preemptive)

n Average waiting time = (0 + 6 + 3 + 7)/4 = 4

Example of Non-Preemptive SJF

P1 P3 P2

73 160

P4

8 12

5.15 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Example of Preemptive SJF

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

p SJF (preemptive)

n Average waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

Preemptive

5.16 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Example of Preemptive SJF

Process Arrival Time Burst Time
P1 0.0 8
P2 1.0 4
P3 2.0 9
P4 3.0 5

p SJF (preemptive)

n Average waiting time = ?

P1 P4P2

1 170

P3

5 10

P1

26

5.17 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

SJF

p SJF is optimal – gives minimum average waiting time for a
given set of processes

• long-term scheduling에좋음(프로세스 시간의사용자예측치이용)

• short-term scheduling 에는나쁨 : 차기 CPU burst 시간파악이어려워서

• 차기 CPU 버스트시간예측모델필요

5.18 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Prediction of the Length of the Next CPU Burst

alpha = 1/2

5.19 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Determining Length of Next CPU Burst

p Can only estimate the length
p Can be done by using the length of previous CPU

bursts, using exponential averaging

:Define 4.
10 , 3.

burst CPU next the for value predicted 2.
burst CPU of length actual 1.

££

=

=

+

aa
t 1n

th
n nt

() .1 1 nnn t taat -+==

5.20 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Examples of Exponential Averaging

p a =0
n tn+1 = tn

n Recent history does not count.

p a =1
n tn+1 = tn
n Only the actual last CPU burst counts.

p If we expand the formula, we get:
tn+1 = a tn+(1 - a) a tn -1 + …

+(1 - a)j a tn -1 + …
+(1 - a)n=1 tn t0

p Since both a and (1 - a) are less than or equal to 1, each
successive term has less weight than its predecessor.

5.21 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

SJF(Shortest-Job-First) 스케줄링
(nonpreemptive 기법)

p Job 의실행시간이가장짧은작업을선택
p 장점 : 평균대기시간이짧다
p 단점 :

n 시분할구현이불가능

n Starvation 의가능성
n Job 의실행시간예측이거의불가능

5.22 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Priority Scheduling

p A priority number (integer) is associated with each process
p The CPU is allocated to the process with the highest priority

(smallest integer º highest priority).
n Preemptive
n nonpreemptive

p SJF is a priority scheduling where priority is the predicted next
CPU burst time.
n Problem º Starvation – low priority processes may never execute.
n Solution º Aging – as time progresses increase the priority of the

process.

소문 : 1973년 MIT의 IBM 7094를 폐쇄할때,
1967년의 프로세스가 아직도 수행되지 못한 것을 발견!

NonPreemptive

5.23 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Priority Scheduling

P2 P5 P1 P3 P4

Process Burst Time Priority
P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

0 1 6 16 18 19

평균 대기 시간 : 8.2초

5.24 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Round Robin (RR)

p Each process gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready
queue.

p If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time in
chunks of at most q time units at once. No process waits
more than (n-1)q time units.

p Performance
n q large Þ FIFO
n q small Þ q must be large with respect to context switch, otherwise

overhead is too high.
p 할당되는시간이클경우 FIFO 기법과같아짐 9908
p 할당되는시간이작은경우문맥교환및오버헤드가자주발생

Preemptive

5.25 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Example of RR with Time Quantum = 20

Process Burst Time
P1 53
P2 17
P3 68
P4 24

p The Gantt chart is:

p Typically, higher average turnaround than SJF, but
better response.

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

5.26 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Time Quantum and Context Switch Time

Context Switch Overhead가 1이라고 한다면,

5.27 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Quantum 의크기

p 길이

p 고정대가변

p 대단히클경우 FIFO 와동일
p 작아질수록문맥교환이빈번

p 최적치: 대부분의대화형사용자의요구가 quantum 보다짧은
시간에처리될경우

경험적으로, CPU 버스트의 80%는 Quantum 보다 짧아야 한다!

5.28 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Turnaround Time Varies With The Time Quantum

5.29 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

SRT(Shortest-Remaining Time)

p SRT(Shortest-Remaining-Times First) 스케쥴링 : preemptive
n SJF 를 Preemptive 기법으로변형
n 대기 list 상의 job 중남아있는실행시간추정치가가장작은작업선택

Preemptive

5.30 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

HRN(Highest-Response-ratio Next)

p HRN(Highest-Response-ratio Next) 스케쥴링
n SJF 는짧은 job 을지나치게선호

p 실행시간이긴프로세스에불리한 SJF 기법을보완하기위한것으로
대기시간과서비스시간을이용하는기법

n 우선순위를계산하여그숫자가가장높은것부터낮은순으로
우선순위가부여

n 우선순위 = 대기시간 + 서비스시간

서비스시간

NonPreemptive

5.31 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Multilevel Queue

p Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

p Each queue has its own scheduling algorithm,
foreground – RR
background – FCFS

p Scheduling must be done between the queues.
n Fixed priority scheduling; (i.e., serve all from foreground then from

background). Possibility of starvation.
n Time slice – each queue gets a certain amount of CPU time which it can

schedule amongst its processes; i.e., 80% to foreground in RR
n 20% to background in FCFS

Preemptive

5.32 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Multilevel Queue Scheduling

5.33 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

Multilevel Feedback Queue

p A process can move between the various queues; aging can
be implemented this way.

p Multilevel-feedback-queue scheduler defined by the following
parameters:
n number of queues
n scheduling algorithms for each queue
n method used to determine when to upgrade a process
n method used to determine when to demote a process
n method used to determine which queue a process will enter when that

process needs service

Preemptive

5.34 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Example of Multilevel Feedback Queue

p Three queues:
n Q0 – time quantum 8 milliseconds
n Q1 – time quantum 16 milliseconds
n Q2 – FCFS

p Scheduling
n A new job enters queue Q0 which is served FCFS. When it gains CPU,

job receives 8 milliseconds. If it does not finish in 8 milliseconds, job is
moved to queue Q1.

n At Q1 job is again served FCFS and receives 16 additional milliseconds.
If it still does not complete, it is preempted and moved to queue Q2.

5.35 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Multilevel Feedback Queues

5.36 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Multilevel Feedback Queue: Preemptive

p 프로세스의특성에따라처리

p 짧은작업에우선권

p IO 위주의작업에우선권 (IO 장치를충분히사용)
p CPU-bound / IO-bound 를빨리파악
p CPU bound-job : 계산위주의작업

(점차아래로이동)
p IO bound-job : (상위 level 에서처리)

5.37 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Level 1
(FIFO)

•••
•••

Use the
CPU

completio
n

Level 2
(FIFO)

•••
•••

Use the
CPU

completio
n

Level 3
(FIFO)

•••
•••

Use the
CPU

completio
n

Level n
(round
robin)

•••
•••

Use the
CPU

completio
n

•••

preemptio
n

preemptio
n

preemptio
n

preemptio
n

5.38 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Multiple-Processor Scheduling

p CPU scheduling more complex when multiple CPUs are
available.

p Homogeneous processors within a multiprocessor.
p Load sharing : 공동의 Ready Queue 사용가능
p Asymmetric multiprocessing – only one processor accesses

the system data structures, alleviating the need for data
sharing.

5.39 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Typical SMT architecture

SMT : Symmetric multithreadingSMT : Symmetric multithreading
-- provide multiple logicalprovide multiple logical-- rather than rather than
physicalphysical-- processors processors

5.40 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Real-Time Scheduling

p Hard real-time systems – required to complete a critical task
within a guaranteed amount of time.

p Soft real-time computing – requires that critical processes
receive priority over less fortunate ones.

5.41 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Dispatch Latency

5.42 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Deadline 스케쥴링 (기한부스케쥴링)

p 각 job 이마감시간을가짐
p 각 job 이마감시간내에처리되도록스케쥴
p 문제점: 구현이거의불가능

n Deadline 을사용자가예측불가능
n 일부사용자희생

n Overhead 가큼

5.43 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Thread Scheduling

p Local Scheduling – How the threads library
decides which thread to put onto an available
LWP

p Global Scheduling – How the kernel decides
which kernel thread to run next

5.44 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

Pthread Scheduling API

#include <pthread.h>
#include <stdio.h>
#define NUM THREADS 5
int main(int argc, char *argv[])
{

int i;
pthread t tid[NUM THREADS];
pthread attr t attr;
/* get the default attributes */
pthread attr init(&attr);
/* set the scheduling algorithm to PROCESS or SYSTEM */
pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM);
/* set the scheduling policy - FIFO, RT, or OTHER */
pthread attr setschedpolicy(&attr, SCHED OTHER);
/* create the threads */
for (i = 0; i < NUM THREADS; i++)

pthread create(&tid[i],&attr,runner,NULL);

5.45 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

Pthread Scheduling API

/* now join on each thread */
for (i = 0; i < NUM THREADS; i++)

pthread join(tid[i], NULL);
}
/* Each thread will begin control in this function */
void *runner(void *param)
{

printf("I am a thread\n");
pthread exit(0);

}

5.46 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

Java Thread Scheduling

p JVM Uses a Preemptive, Priority-Based Scheduling
Algorithm

p FIFO Queue is Used if There Are Multiple Threads
With the Same Priority

5.47 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

Java Thread Scheduling (cont)

JVM Schedules a Thread to Run When:

1. The Currently Running Thread Exits the Runnable State
2. A Higher Priority Thread Enters the Runnable State

* Note – the JVM Does Not Specify Whether Threads are Time-
Sliced or Not

5.48 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

Time-Slicing

Since the JVM Doesn’t Ensure Time-Slicing, the yield()
Method

May Be Used:

while (true) {
// perform CPU-intensive task
. . .
Thread.yield();

}

This Yields Control to Another Thread of Equal Priority

5.49 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

Thread Priorities

Priority Comment
Thread.MIN_PRIORITY Minimum

Thread Priority
Thread.MAX_PRIORITY Maximum Thread

Priority
Thread.NORM_PRIORITY Default Thread

Priority

Priorities May Be Set Using setPriority() method:
setPriority(Thread.NORM_PRIORITY + 2);

5.50 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

Scheduler - TP
/**
* Scheduler.java
*/
public class Scheduler extends Thread
{
private CircularList queue;
private int timeSlice;
private static final int DEFAULT_TIME_SLICE = 1000; // 1초

public Scheduler() {
timeSlice = DEFAULT_TIME_SLICE;
queue = new CircularList();

}

public Scheduler(int quantum) {
timeSlice = quantum;
queue = new CircularList();

}

5.51 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

Scheduler - TP
// adds a thread to the queue
public void addThread(Thread t) {

t.setPriority(2);
queue.addItem(t);

}

// this method puts the scheduler to sleep for a time
quantum

private void schedulerSleep() {
try {

Thread.sleep(timeSlice);
} catch (InterruptedException e)
{};

}

5.52 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

Scheduler - TP
public void run() {

Thread current;
// set the priority of the scheduler to the highest priority
this.setPriority(6);

while (true) {
current = (Thread)queue.getNext();
if ((current != null) &&

(current.isAlive()) {
current.setPriority(4);
schedulerSleep();
current.setPriority(2);

}
}

}
}

5.53 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

/**
* TestScheduler.java
* This program demonstrates how the scheduler operates.
* This creates the scheduler and then the three example

threads.
*/

public class TestScheduler
{
public static void main(String args[]) {
/**
* This must run at the highest priority
* to ensure that it can create the scheduler and the
example

* threads. If it did not run at the highest priority, it is
* possible that the scheduler could preemt this and not
allow

5.54 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

Thread.currentThread().setPriority(Thread.MAX_PRIORITY);

scheduler CPUScheduler = new scheduler();
CPUScheduler.start();

TestThread t1 = new TestThread("Thread 1");
t1.start();
CPUScheduler.addThread(t1);

TestThread t2 = new TestThread("Thread 2");
t2.start();
CPUScheduler.addThread(t2);

TestThread t3 = new TestThread("Thread 3");
t3.start();
CPUScheduler.addThread(t3);

}
}

5.55 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

Algorithm Evaluation

p Deterministic modeling –사전에정의된특정한작업부하를
받아들여그작업부하에대한알고리즘의성능을정의

p Queueing models
p Implementation

5.56 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

Deterministic modeling

Process Burst Time
P1 10
P2 29
P3 3
P4 7
P5 12

5.57 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

FCFS

Average waiting time = 28

5.58 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

SJF(nonpreemptive)

Average waiting time = 13

5.59 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

RR

Average waiting time = 23

5.60 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

Evaluation of CPU Schedulers by Simulation

5.61 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

Solaris 2 Scheduling

5.62 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

Windows 2000 Priorities

5.63 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Report

Operating System

n Solaris, Windows XP, Linux 각각의운영체제에서
지원하는 Scheduling 기법에대해서 1) 각각기술하고 2)
비교표를만드시오.

n 기한

n 11월 11일

n 채점기준

n 교과서에 있는 내용만 있을 경우 (1점)
n 비교표의작성여부(1점)
n 각운영체제당별도조상내용이있을경우(OS당 2점)

n 교과서내용만정리 : 1점
n 교과서내용 + 비교표 : 2점
n 교과서내용 + 비교표 + 운영체제 1개집중조사 : 4점
n 최대 : 교과서+비교표+운영체제3개+추가운영체제 2개:12점

기능명 Solaris XP Linux

기능1

기능2
…

