Chapter 5: CPU Scheduling

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 Silberschatz, Galvin and Gagne ©2007

Chapter 5: CPU Scheduling

Basic Concepts

Scheduling Criteria
Scheduling Algorithms
Multiple-Processor Scheduling
Real-Time Scheduling

Thread Scheduling

Operating Systems Examples
Java Thread Scheduling
Algorithm Evaluation

O O 00000 O O

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.2 Silberschatz, Galvin and Gagne ©2007

Basic Concepts

&J] job scheduling
ctJ| CPU scheduling <=Focus
=J| swapping : Swap In, Swap Out

o CPU-I/0 HAE Z=J|(burst cycle)

= cycle : CPU &l 2(CPU burst) <--> 1/0O THI1(I/O burst)
= CPUburst =&

S

o 1/0O bound program : &2 & &2 CPU burst Jt&
o CPU bound program : &= 0Ot= 2! CPU burst Jt&

o CPUAHZ=H

m S| A =2 (short-term scheduler) : ready queue 0l Al & &4

FIFO(First-In First-Out)
SH=2 7

Ec|
HECAE

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.3 Silberschatz, Galvin and Gagne ©2007

Alternating Sequence of CPU And I/O Bursts

load store
add store CPU burs
read from file
wait for /O I/O burst
store increment
index CPU burs
write to file
wait for /O I/O burst
load store
add store CPU burs
read from file
wait for IO /O burst
L]
L]
[)
54

Operating System Concepts with Java — 7th Edition, Nov 15, 2006

i/

Silberschatz, Galvin and G'agn—e ©2007

Histogram of CPU-burst Times

I/O bound)job

160 _i

a0
120
100
Hyperexponential

% \ distribution

60

40 \ C cPU boun?ﬁ)b
/‘

20 \ 51/_/

% >

0 8 16 24 32 40
burst duration (milliseconds)

Il A,
¥ = CPU burst?t &2 £=2| 21 CPU burstz /+4

=dg A

frequency

A

Silberschatz, Galvin and (gagr{e ©2007

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.5

CPU Scheduler

0o CPU Schedulerl &t

= Selects from among the processes in memory that are ready to
execute, and allocates the CPU to one of them

O CPU scheduling decision time
running -> waiting (0il:1/O request interrupt)
running -> ready (0ll: time run out) '
waiting -> ready (0l : /O 2t = interrupt)
halt : non preemptive

o 14t 40l 58 Scheduling0| 24 s BS: nonpreemptive2

=
—
 —
—

HJ Of

B 20l A Scheduling0l Jts& &2 : preemptive

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.6 Silberschatz, Galvin and Gagne ©2007

CPU Scheduler

n & & (preemptive) 2 H =
o S=otER/AH((timen2 R
o S7 OIOIEHNl Tt Z2MA SISt ER

= HI&E(non preemptive) A =Ed
o MS-Windows, === ot =R K (timer) &1
0 &2 L= /Ol Hl= CPUE =

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.7

Silberschatz, Galvin and dagne ©2007

Dispatcher

o Dispatcher2 & 2
= A module which gives control of the CPU to the process
selected by the short-term scheduler

o Dispatcher2| & &t
m Switching context
m Switching to user mode
m jumping to the proper location in the user program

O Dispatch latency
= DispatcherJt otLIS| 2 NAE EAXlotd UE L2 A A2
S~ S ARG MK A28 E Al

Operating System Concepts with Java — 7t Edition, Nov 15, 2006 5.8 Silberschatz, Galvin and Gagne ©2007

CPU Scheduling® A5 J|=

O

0| = & (CPU utilization) : 40% ~ 90%
= keep the CPU as busy as possible

X 2l Z(throughput) : &2 A2t 22 = L2 A 2
m # of processes that complete their execution per time unit

Bt2t Al 2F(turnaround time) : system in -> system out &2 &l Al 2t
= amount of time to execute a particular process

CH 21 Al 2H(waiting time) : ready queueOfl M J|Ctg! Al 2t

= amount of time a process has been waiting in the ready queue

S Y AlZH(response time) : CHate AIAEI0IA 2H SE DKL AlZE
= amount of time it takes from when a request was submitted until the first
response is produced, not output (for time-sharing environment)

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.9 Silberschatz, Galvin and Gagne ©2007

Scheduling Algorithms

m FCFS (First-Come First-Served)

m SJF (Shortest-Job-First)

o SRT (Shortest-Remaining-Time)

m Priority Scheduling
o HRN(Highest-Response-ratio Next

" RR (Round Robin)

m Multilevel Queue

m Multilevel Feedback Queue

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.10

Silberschatz, Galvin and G:agr{e ©2007

First-Come, First-Served (FCFS) Scheduling

& A2l (First-Come, First-Served) AH=H

Process Burst Time

P, 24
P, 3

O Suppose that the processes arrive in the order: P, , P, , P,
The Gantt Chart for the schedule is:

P P, P3

o) 24 27 30
m Waiting time for P, =0; P, =24, P;=27
Average waiting time: (0 + 24 + 27)/3 =17

4N ,:v e
Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.11 Silberschatz, Galvin and Gagne ©2007

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order
P,,P;,P,.
O The Gantt chart for the schedule is:

P, P3 P

0) 3 6 30
= Waiting time for P;=6;P,=0.P;=3
= Average waiting time: (6 +0+ 3)/3=3
= Much better than previous case.

O Convoy effect :

m FCFS AHEY 2 12IE(1/0 Queue 2t Read QueueE JHE) Ul /AL Al CPU-bound
T2 Nl A(CPUZ 20| XXI5H=)2 /0 bound Z2 M A (AR O 2 CPUE =)
AM&E3dt=)IF U= Il CPU-bound ZZ M A Z QloH I/O bound ZZ N A D B2
CPUSI YO Z JOBS &2 = UABU T =Fotd, =ME JITHE2ZMN
TR, HBENOIAJAE M50l B0 Xe &1t

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.12 Silberschatz, Galvin and Gagne ©2007

Shortest-Job-First (SJF) Scheduling

Z A MH 2K (Shortest-Job-First) AH =&

0o SJF Scheduling2| &2

= Associate with each process the length of its next CPU burst. Use
these lengths to schedule the process with the shortest time.

O Two schemes:

= nonpreemptive — once CPU given to the process it cannot be
preempted until completes its CPU burst.

= preemptive — if a new process arrives with CPU burst length less than
remaining time of current executing process, preempt. This scheme is
know as the
Shortest-Remaining-Time-First (SRTF).

o SJF is optimal — gives minimum average waiting time for a
~ given set of processes.

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.13 Silberschatz, Galvin and Gagne ©2007

Example of Non-Preemptive SJF

Process Arrival Time Burst Time
P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4

A

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.14 Silberschatz, Galvin and Gagne ©2007

Example of Preemptive SJF Preemptive

Process Arrival Time Burst Time
P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4

b

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.15 Silberschatz, Galvin and Gagne ©2007

Example of Preemptive SJF

Process Arrival Time Burst Time
P, 0.0 8
P, 1.0 4
P, 2.0 9
P, 3.0 5

O SJF (preemptive)

Pl PZ I:)4 I:)1 P3

A

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.16 Silberschatz, Galvin and Gagne ©2007

SJF

O SJF is optimal — gives minimum average waiting time for a
given set of processes

long-term schedulingtil ZS(Z 2 Ml A AlZ2t2 AFE X 0= Xl 0l)
short-term scheduling 0l = Lt& : XtJ| CPU burst Al 2t T2 0] O 4 H A

AIICPU HAE AZH U= 28 2R

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.17 Silberschatz, Galvin and Gagne ©2007

Prediction of the Length of the Next CPU Burst

CPU burst (t)

"guess” (1))

alpha = 1/2

4N ,:v e
Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.18 Silberschatz, Galvin and Gagne ©2007

Determining Length of Next CPU Burst

O Can only estimate the length

O Can be done by using the length of previous CPU
bursts, using exponential averaging

t, =actual length of n™ CPU burst

. Th41 = predicted value for the next CPU burst
a, O < &héﬂlatn +(1—a)rn.
. Define :

W N =

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.19 Silberschatz, Galvin and Gagne ©2007

Examples of Exponential Averaging

O a=0
" The T Ty
= Recent history does not count.
O o=1
" The = Iy
= Only the actual last CPU burst counts.
O If we expand the formula, we get:
T =ot+T-a)at -7+ ...
+HT1-a)at, -1+ ...
+(1-a)1t 1,
O Since both a and (1 - o) are less than or equal to 1, each
successive term has less weight than its predecessor.

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.20 Silberschatz, Galvin and Gagne ©2007

SJF(Shortest-Job-First) A 3

A
=g

__ (nonpreemptive J| &)
O Job 2 AlGHAIZI0] JHE B2 HYS A

A& HZ WIIAZ0l Rt

o &8
= ANEE 80l =)
= Starvation 2| Jt=
= Job 2| &2 A|IZ2F (f

ol

O

J
A
S

1Z0] ol 20t

D

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.21

" N
r/

Silberschatz, Galvin and dagl{e ©2007

Priority Scheduling NonPreemptive

O A priority number (integer) is associated with each process

0 The CPU is allocated to the process with the highest priority
(smallest integer = highest priority).
= Preemptive
= nonpreemptive

O SJF is a priority scheduling where priority is the predicted next
CPU burst time.

= Problem = Starvation — low priority processes may never execute.

= Solution = Aging — as time progresses increase the priority of the
process.

2= 1 19734 MITZ2| IBM 7094 HME M,

1967482 I NAJE O = E[X| et A

A

rol
\J
lo
u
Y

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.22 Silberschatz, Galvin and Gagne ©2007

Priority Scheduling

Process Burst Time Priority

P1 10 3
P2 1 1

P3 2 4

P4 1 5

P5 5 2

P, |P. P, P, P,
0 1 6 16 18 19

S Ol A2t : 8.2%

A

Silberschatz, Galvin and (;agr{e ©2007

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.23

Round Robin (RR) Preemptive

O Each process gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready
queue.

O If there are n processes in the ready queue and the time
quantum is g, then each process gets 1/n of the CPU time in
chunks of at most g time units at once. No process waits
more than (n-1)qg time units.

0 Performance

= qlarge = FIFO
= g small = g must be large with respect to context switch, otherwise
overhead is too high.
= AIZ2t0l 2 B2 FIFO J|1 & 1t ?EOPé! 9908
H o]

= IR0 He B2 20

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.24 Silberschatz, Galvin and Gagne ©2007

Example of RR with Time Quantum = 20

Process Burst Time
P, 53
P, 17
P, 68
P, 24

O The Gantt chart is:

P, |P, |P; [P, |P, [Py |P, |P, [P5 |Ps

0 20 37 57 77 97 117 121 134 154 162

O Typically, higher average turnaround than SJF, but
.1, better response.

Silberschatz, Galvin and (gagr{e ©2007

53
Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.25

Time Quantum and Context Switch Time

Context Switch OverheadJt 10|2t1) StCHHA,

process time = 10 quantum context
switche
12 0
[0 10
6 1
[0 6 10
1 9

#,

Silberschatz, Galvin and éagl{e ©2007

5.26

Operating System Concepts with Java — 7th Edition, Nov 15, 2006

Quantum 2

i
~

o 20|
o 0§ O
o CHEol 2 HL FIFO 2 =Y
0 M0E =2 2 WE0| BIH
o Z&EX:HE22 UHatd At=
AZ2HO Helg 8=
2B O

2, CPU HAES| 80%= Quantum ZC+ ZOtOt

Operating System Concepts with Java — 7th Edition, Nov 15, 2006

T J} quantum 2Lt &2

rol
0

Silberschatz, Galvin and (gagr{e ©2007

Turnaround Time Varies With The Time Quantum

process

N

()
E
4
e

j

2

O

L

©

c

p—

2
+—

[4b)

(@)

©

R

48]

=

©

3 4 5

time quantum

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.28 Silberschatz, Galvin and Gagne ©2007

SRT(Shortest-Remaining Time) preemptive

0 SRT(Shortest-Remaining-Times First) AH & & : preemptive
= SJF 2 Preemptive J|EH o HE

= U] list &2 job & 50IUA= &dAIZE =X HE &

r10

XHO{ A EH

/ —_

A

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.29 Silberschatz, Galvin and Gagne ©2007

HRN(Highest-Response-ratio Next)nonpreemptive

o HRN(Highest-Response-ratio Next) A H & &
= SIF=E®Sjb S AUXH &5
o ABHAIZEO] 21 T2 MAN 22/8 SIFIIYS B25t)| 9E Ao
CHOIAI2EDE MHIA AlZHS 0|26t D)

0
)

=

@

LS
x

[

=
T

£ HA&GHH 1 == X0F OHE =
|

CHOTAIZE + ABIAAIZE

AMH| A A2
=2 [tioIAIZE | MEEAZE -~AIGB+B)/5=2
5 5 — B I (10 % 6) f 6= 267
10 6 - C:(5+ 7/ 7=314
15 7
20 g —D:(90+8f8:35
% $A297 71 B A

43 » %
Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.30 Silberschatz, Galvin and Gagne ©2007

Multilevel Queue Preemptive

O Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

0 Each queue has its own scheduling algorithm,
foreground — RR
background — FCFS

O Scheduling must be done between the queues.

= Fixed priority scheduling; (i.e., serve all from foreground then from
background). Possibility of starvation.

= Time slice — each queue gets a certain amount of CPU time which it can
schedule amongst its processes; i.e., 80% to foreground in RR

= 20% to background in FCFS

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.31 Silberschatz, Galvin and Gagne ©2007

Multilevel Queue Scheduling

system processes

batch processes

student processes

lowest priority

#,

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.32 Silberschatz, Galvin and Gagne ©2007

Multilevel Feedback Queue Preemptive

O A process can move between the various queues; aging can
be implemented this way.

O Multilevel-feedback-queue scheduler defined by the following
parameters:

S
Lo, b
a e “ 2
\ Qi G,
= ‘2 o
\ ,{

p}@ﬁ@tm@wmth Java — 7th Edition, Nov 15, 2006 5.33 Silberschatz, Galvin and Gagne ©2007

number of queues

scheduling algorithms for each queue

method used to determine when to upgrade a process
method used to determine when to demote a process

method used to determine which queue a process will enter when that
process needs service

Example of Multilevel Feedback Queue

O Three queues:
= Q,—time quantum 8 milliseconds

= Q, —time quantum 16 milliseconds
= Q,-FCFS

O Scheduling

= A new job enters queue Q, which is served FCFS. When it gains CPU,
job receives 8 milliseconds. If it does not finish in 8 milliseconds, job is
moved to queue Q;.

= At Q, job is again served FCFS and receives 16 additional milliseconds.
If it still does not complete, it is preempted and moved to queue Q,.

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.34 Silberschatz, Galvin and Gagne ©2007

Multilevel Feedback Queues

bl quantum = 8 ‘7
quantum = 16 s7

Operating System Concepts with Java — 7t Edition, Nov 15, 2006 5.35 Silberschatz, Galvin and Gagne ©2007

Multilevel Feedback Queue: Preemptive

T NAS S40 Wet Ml
WS RO MR

10 22 &0 S (10 EXE S=0| AHE)
CPU-bound / 10-bound € # 2| I}<f

CPU bound-job : Hl &t ==2] &

(B Xt Oteli 2 01 =)

o 10 bound-job : (&< level Ol X 2l)

O O O O 0O

43 = s
Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.36 Silberschatz, Galvin and Gagne ©2007

completio

A 4

N

completio

v

N

completio

v

N

completio

Level 1 PPYS [Use the
(FIFO) % Use
preemptio]
n
(Firo) (oo ,| Use the
(FIFO) o Use
Pl‘eemptio J
N
L€V€| 3 [X X) . USe the
(FIFO) % Use
preemptio J
N
o
o
Level n eoe Use the
(round e Use
e’ preemptio]
' .-_..f“‘_' ’ %v D

Operating System Concepts with Java — 7th Edition, Nov 15, 2006

5.37

n >

Silberschatz, Galvin and Gagne ©2007

Multiple-Processor Scheduling

O CPU scheduling more complex when multiple CPUs are
available.

O Homogeneous processors within a multiprocessor.
Load sharing : & =2| Ready Queue AIE Jt s

O Asymmetric multiprocessing — only one processor accesses
the system data structures, alleviating the need for data
sharing.

O

Operating System Concepts with Java — 7t Edition, Nov 15, 2006 5.38 Silberschatz, Galvin and Gagne ©2007

Typical SMT architecture

logical | | logical logical | | logical
CPU CPU CPU CPU
physical physical
CPU CPU
system bus

SMT : Symmetric multithreading
- provide multiple logical- rather than
physical- processors

A

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.39 Silberschatz, Galvin and Gagne ©2007

Real-Time Scheduling

O Hard real-time systems — required to complete a critical task
within a guaranteed amount of time.

O Soft real-time computing — requires that critical processes
receive priority over less fortunate ones.

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.40 Silberschatz, Galvin and Gagne ©2007

Dispatch Latency

intarrupd
processing

process made
available

M— conflicts ——

rasponss interval

Operating System Concepts with Java — 7th Edition, Nov 15, 2006

respanss 1o evaent

————— dispatch latancy ——m

—— dispatch ——m

5.41

P

roal-lime
process

eacLtion
i

Silberschatz, Galvin and Gagn

e ©2007

O
D
Q
o
2
D
>
N
m
o
O
o
i,
>
~
m
L

o 2t job O OtZAlZ2tE JHE
o 2 job O OFZAIZELHOI XHE2l&E &= AAH=E
o =M&E: 20l He 2Its
» Deadline & AtE Xt M= Sts
m 25 AIS AL 8| A4
= Overhead Jt 2
Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.42 ‘ e 00

Silberschatz, Galvin and (;agr{e ©2007

Thread Scheduling

O Local Scheduling — How the threads library
decides which thread to put onto an available

LWP

O Global Scheduling — How the kernel decides
which kernel thread to run next

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.43 Silberschatz, Galvin and Gagne ©2007

Pthread Scheduling API

#include <pthread.h>
#include <stdio.h>
#define NUM THREADS 5
int main(int argc, char *argv([])
{
int i;
pthread t tid[NUM THREADS];
pthread attr t attr;
[* get the default attributes */
pthread attr init(&attr);
[* set the scheduling algorithm to PROCESS or SYSTEM */
pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM);
[* set the scheduling policy - FIFO, RT, or OTHER */
pthread attr setschedpolicy(&attr, SCHED OTHER);
[* create the threads */
for (i=0; i< NUM THREADS; i++)
pthread create(&tid[i],&attr,runner,NULL);

Q@’F@EM@"&Y@mm Java - 7th Edition, Nov 15, 2006 5.44 Silberschatz, Galvin and Gagne ©2007

Pthread Scheduling API

/* now join on each thread */
for (i=0;i < NUM THREADS; i++)
pthread join(tid[i], NULL);

}
[* Each thread will begin control in this function */
void *runner(void *param)
{

printf("l am a thread\n");

pthread exit(0);

N ; L.
Q@F@Em@wmth Java — 7th Edition, Nov 15, 2006 5.45 Silberschatz, Galvin and Gagne ©2007

Java Thread Scheduling

o JVM Uses a Preemptive, Priority-Based Scheduling
Algorithm

O FIFO Queue is Used if There Are Multiple Threads
With the Same Priority

3 ‘)_4 |

.

mﬁm@@gmth Java — 7th Edition, Nov 15, 2006 5.46 Silberschatz, Galvin and Gagne ©2007

Java Thread Scheduling (cont)

JVM Schedules a Thread to Run When:

1. The Currently Running Thread Exits the Runnable State
2. A Higher Priority Thread Enters the Runnable State

* Note — the JVM Does Not Specify Whether Threads are Time-
Sliced or Not

W@Em@&gmth Java — 7th Edition, Nov 15, 2006 5.47 Silberschatz, Galvin and Gagne ©2007

Time-Slicing

Since the JVM Doesn’t Ensure Time-Slicing, the yield()
Method

May Be Used:

while (true) {
// perform CPU-intensive task

Thread.yield();

This Yields Control to Another Thread of Equal Priority

Q@'F@Em@"sy@mth Java — 7th Edition, Nov 15, 2006 5.48 Silberschatz, Galvin and Gagne ©2007

Thread Priorities

Priority Comment

Thread.MIN_PRIORITY Minimum
Thread Priority

Thread.MAX_PRIORITY Maximum Thread
Priority

Thread.NORM_PRIORITY Default Thread
Priority

Priorities May Be Set Using setPriority() method:
setPriority(Thread.NORM_PRIORITY + 2);

i s
Samnige A
- LS

p}@ﬁ@tlﬂ@%t@;ﬁﬂth Java — 7th Edition, Nov 15, 2006 5.49 Silberschatz, Galvin and Gagne ©2007

Scheduler - TP

I**

* Scheduler.java
*
public class Scheduler extends Thread

{

private CircularList queue;
private int timeSlice;
private static final int DEFAULT_TIME_SLICE =1000; // 1=

public Scheduler() {
timeSlice = DEFAULT_TIME_SLICE;
queue = new CircularList();

}

public Scheduler(int quantum) {
timeSlice = quantum;

v % ueue = new CircularList();

/

Q@F@Elﬂ@"&‘fsmth Java — 7th Edition, Nov 15, 2006 5.50 Silberschatz, Galvin and Gagne ©2007

Scheduler - TP

// adds a thread to the queue

public void addThread(Thread t) {
t.setPriority(2);
queue.addltem(t);

}

// this method puts the scheduler to sleep for a time
quantum

private void schedulerSleep() {
try {
Thread.sleep(timeSlice);
} catch (InterruptedException e)

A L]
b T,

}! ' b)

W Dl
Y Al

S :
Y il ! ¢

f 7/

Q@F@Em@"sy@mth Java — 7t Edition, Nov 15, 2006 5.51 Silberschatz, Galvin and Gagne ©2007

Scheduler - TP

public void run() {
Thread current;
/] set the priority of the scheduler to the highest priority
this.setPriority(6);

while (true) {
current = (Thread)queue.getNext();
if ((current != null) &&
(current.isAlive()) {
current.setPriority(4);
schedulerSleep();
current.setPriority(2);

5.52 Silberschatz, Galvin and Gagne ©2007

/**
* TestScheduler.java
* This program demonstrates how the scheduler operates.

* This creates the scheduler and then the three example
threads.

*/

public class TestScheduler

{
public static void main(String args|]) {
/**
* This must run at the highest priority

*{o ensure that it can create the scheduler and the
example

%reads If it did not run at the highest priority, it is

h possible that the scheduler could preemt this and ndt* & <
Q@F@Eiﬂ@nsaﬁmﬂth Java — 7t Edition, Nov 15, 2006 5.53 Silberschatz, Galvin and Gagne 02007

o/

Thread.currentThread().setPriority(Thread.MAX_PRIORITY);

scheduler CPUScheduler = new scheduler();
CPUScheduler.start();

TestThread t1 = new TestThread("Thread 1");
t1.start();
CPUScheduler.addThread(t1);

TestThread t2 = new TestThread("Thread 2");
t2.start();
CPUScheduler.addThread(t2);

TestThread t3 = new TestThread("Thread 3");
t3.start();
CPUScheduler.addThread(t3);

“
~ -7 4
- L i
AL l‘
d

Q@F&EI@@"&Y@Mth Java — 7th Edition, Nov 15, 2006 5.54 Silberschatz, Galvin and Gagne ©2007

Algorithm Evaluation

0 Deterministic modeling — At&0fl 2= S& st &Y 26tE
JHOt= 0 11 & Fot0f tist lel&e 85 E2

O Queueing models
O Implementation

\) ‘& -
mﬁm@&gmth Java — 7th Edition, Nov 15, 2006 5.55 Silberschatz, Galvin and Gagne ©2007

Deterministic modeling

Process Burst Time
P, 10
P, 29
P, 3
P, V4
P 12

e
k)
4.
d =

P, . = :
perating Systemtn java - 7 Edition, Nov 15, 2006 5.56 Silberschatz, Galvin and Gagne ©2007

FCFS

0 10 39 4z 49 61

Average waiting time = 28

b r/

mﬁm@@gmth Java — 7th Edition, Nov 15, 2006 5.57 Silberschatz, Galvin and Gagne ©2007

SJF(nonpreemptive)

Average waiting time = 13

" N
r/

“Ja . = .
mﬁm@@gmth Java — 7th Edition, Nov 15, 2006 5.58 Silberschatz, Galvin and Gagne ©2007

4

RR

0 10 20 23 30 40 50 52 61

Average waiting time = 23

fI" r/

mﬁm@@gmth Java — 7th Edition, Nov 15, 2006 5.59 Silberschatz, Galvin and Gagne ©2007

Evaluation of CPU Schedulers by Simulation

perfarmance
simulation = Slatistics

for FOFS
| FGCFs |

CPU 10
> 213
actual cCPU 12 parfarmance
process WO 112 e simulation mfe- Statistics
execution CPU 2 for SJF

W 147 g JF
CPU173

frace tape
parfarmanca
simulation mje- Statistics

for AR(E = 14])
[Reio-=14) |

b N ‘ “_—
Q@F@Emgnsyiﬁmm Java - 7th Edition, Nov 15, 2006 5.60 Silberschatz, Galvin and Gagne ©2007

Solaris 2 Scheduling

scheduling
order

first

4

h

A h lowest

nSYrst;@inﬂth Java — 7th Edition, Nov 15, 2006

perat

class-
specific
priorities

real time

interactive and
time sharing

scheduler
classes

5.61

run
queue

kernel
threads of real-
time LWPs

kernel
service
threads

kernel
threads of
interactive and
time-sharing
LWPs

Silberschatz, Galvin and Gagne ©2007

Windows 2000 Priorities

idle
priority

time-critical 15

highest

above normal

normal

below normal

lowest

idle

5.62 Silberschatz, Galvin and Gagne ©2007

Report

m Solaris, Windows XP, Linux 2r2t2| 2 X Xl 0l A
Kl & ot= Scheduling 7|8 0fl CHoll A 1) 2727 Jl =06t 2)
HWHE BFEA|IL,

Ol [sors |xp L
m JlE 51
n 118 11 JI|=2
m ME JI=
= DA U= IR US A (1F)
| t”DLE_O—I II-/\'l O:lb’(-I)
n 2 2AMAY ET IA R0 US AR(0SY 27)
" DA WR0 P 1E
" DM UE+HDE: 28
w DA LH9+HI T+ UMMM BEXAL: 4E
= ZO: DM+ DE+S S M RSN+ SR 204:128 e

Q@F@Emgnsyiﬁmm Java — 7th Edition, Nov 15, 2006 5.63 Silberschatz, Galvin and Gagne ©2007

