Chapter 4: Threads

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 Silberschatz, Galvin and Gagne ©2007

Chapter 4: Threads

o Overview

O Multithreading Models
O Threading Issues

O Pthreads

O Windows XP Threads
O Linux Threads

O Java Threads

‘. ‘;, -
Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.2 Silberschatz, Galvin and Gagne ©2007

Threads 2

O A thread (or lightweight process) is a basic unit of CPU
utilization; it consists of:

- thread ID

- program counter
- register set

- stack space

O A thread shares with its peer threads its:
- code section
- data section
- operating-system resources
collectively known as a task.

O A traditional or heavyweight process is equal to a task with
one thread

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.3 Silberschatz, Galvin and Gagne ©2007

Threads 2

wvalue to the right place.

0 Processl| Kl 22| —_rl_n_(o K |)
System High memory Stack illustrated after the ca.].l
func(72,73) called from main().
High Address assuming fune defined by:
9 S func(int x. inty) {
Program Stack = o ; 3
arge " i mtal
mfp — frame pointer (for main; . .
ST ﬂ. G K SEGME NT % auto variables for nip v ¢) int b[3]; .
P main() /* no other auto variables #/
w auto variables for A S T i ot
Stack qrows downvard stack pointer size 4 and assumes s_lack af high
(grows downward if fune() address and descending down.
able f calls another function) ded vi il K
aasibla . avariadiejor Expanded view of the stack
irl'n;r addrelgs h'sﬁfne R grastay '
Stack
Offset from current main()
Haap grows upward frame pointer (for o Contents
~ Z fune()) variables
g é malloc.o (lib*.s0) hbrary.ﬁmcmfus i +12 73 y
= = - > dynamically linked + 5
- = tfo (lib* 8 72 X
3 z = printf.o (Iib*.s0) (usual case) +4 . . s
Eal:l - d 13 return address
frame pointer ——> 0 mip caller’s frame pointer
T T ?mxla ble fc 9}:' points here —4 garbage a
1eq, oWl -
BSS: zero-filed DATA SEGMENT - : 2 e |
variables brk poimnt =12 garbage b[1]
-16 garbage b[0]
Heap stack pointer ——
Giohals smd (malloe arena) (top of stack)
Static variables Pl
1”313-} Low Address { All auto variables and parameters
F global variables uninitialized data (bss) are 1'efere‘nced via offsets from the
< frame pointer.
Q ", &d. " initialized data The frame pointer and stack pointer
Executable code TEKT SEGMENT are in registers (for fast access).
[Sha m'd] = mallec.o (lib*.a) library functions if
2 - — statically linked When funet returns, the return value
% Dt i (ibta) (not usnal case) is stored m a register. The stack pointer
2 Hleo 1s move ta the y location. the code
“é o func(72.73)| =€—— ra (return address) L —:iuul;pcg to the .1:&1’\“11. address (:ﬁi)
= - and the frame pomter 1s set fo nw
E ert0.o (startup routine) (the stored value of the caller’s frame
) Low memory pointer). The caller moves the return

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.4 Silberschatz, Galvin and Gagne ©2007

Threads i &

O Process?t Thread2 XtO|

Process A
Process A

Thread 1

pthread_create()
Process B

Data(Global
Variables) Data_(GIobaI
Variables) Process A
Thread 2
Code/Text Data(Global Code/Text
Variables)
Code/Text
Process Thread

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.5 Silberschatz, Galvin and Gagne ©2007

Threads 2

0 Process@t Thread2l X}IO0|

o i N o W ™
System ROk

Fakd laaded DLLs

= e
| Global shared heap X |
- ol
| Local shared heap | | | | Global shared heap V|
= ol -
| Theead2 default heap | | [| Global shared heap % || | | Global shared heap ¥ |
= = = e
I Thraad! default heap i | Thread! default heap | E Thread! default heap |
| Thread2 stack I
| Thread! stack] Theeadt stack |1 || Thread! stack
A axe image B.exe image C.exe image
5 Process A il K Process B il Process C)

#,

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.6 Silberschatz, Galvin and Gagne ©2007

Single and Multithreaded Processes

code

data

files

registers

stack

thread — ;

single-threaded process

code data files
registers ||| registers ||| registers
stack stack stack
i—

— thread

multithreaded process

Operating System Concepts with Java — 7th Edition, Nov 15, 2006

4.7

A

Silberschatz, Galvin and (gagr{e ©2007

Benefits

O Responsiveness

= eg) multi-threaded Web - if one thread is blocked (eg network) another thread
continues (eg display)

O Resource Sharing

= nthreads can share binary code, data, resource of the process (files, crt, ...)

0o Economy
m creating and context switching thread (rather than a process)
m Solaris: 306H 54

o Utilization of MP Architectures

m each thread may be running in parallel on a different processor

Operating System Concepts with Java — 7t Edition, Nov 15, 2006 4.8 Silberschatz, Galvin and Gagne ©2007

User and Kernel Threads

0 User Thread

= Thread management done by user-level
threads library

= ctOlEddl= HE L NE 80| Ay =2
ddl AHEE, &l E A&

m HE S Sotk| 22B2, M4 22|t
=Lt SHHE AMAE == =dote AIS A
=2 ME= LE AdE2 &N
AAHEEY TR S

User and Kernel Threads

O Kernel Thread
= Supported by the Kernel

s HE ==0A 22|20 41t
A= SH AAHlEE 2 5 RUS

= Examples
- Windows 95/98/NT/2000
- Solaris - o
-TruB4 UNIX S5 5ac e yan mace =2 =6
‘ - BeOS
e Linux

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.10 Silberschatz, Galvin and Gagne ©2007

User and Kernel Threads

O Some are supported by kernel

eg) Windows 95/98/NT Kernel
Solaris — Threads
Digital UNIX

= Others are supported by library —> Threads
eg) POSIX Pthreads

Mach C-threads
Solaris threads

4*%m Some are real-time threads
& s

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.11 Silberschatz, Galvin and Gagne ©2007

Multithreading Models

Mapping user threads to kernel threads:
o Many-to-One
O One-to-One

o Many-to-Many

= Two-level Model : Many-to-Many £ 22| H&

‘l ‘l' -
Operating System Concepts with Java — 7t Edition, Nov 15, 2006 4.12 Silberschatz, Galvin and Gagne ©2007

Many-to-One

O Many user-level threads mapped to single
kernel thread

O Examples:
m Solaris Green Threads
m GNU Portable Threads g g g

<«——user thread

k) «=—— kernel thread

43 ,:v s
Operating System Concepts with Java — 7th Edition, Nov 15, 2006 413 Silberschatz, Galvin and Gagne ©2007

One-to-One

O Each user-level thread maps to kernel thread
O Examples

= Windows NT/XP/2000

= Linux

= Solaris 9 and later

<«—— user thread

é é é é «—— kernel thread

1
Operating System Concepts with Java — 7th Edition, Nov 15, 2006 414 Silberschatz, Galvin and Gagne ©2007

Many-to-Many Model

O Allows many user level threads to be mapped to many
kernel threads

O Allows the operating system to create a sufficient
number of kernel threads

= Solaris prior to version 9
= Windows NT/2000 with the ThreadFiber package

S

Operating System Concepts with Java — 7th Edition; NovT5, 2001 T Silberschatz, Galvin and Gagne ©2007

Two-level Model

o Similar to M:M, except that it allows a user thread
to be bound to kernel thread

O Examples
m |[RIX, HP-UX, True4 UNIX, Solaris 8 and earlier

; é «—— yser thread

° ° ° @ <«—— kernel thread

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.16 Silberschatz, Galvin and Gagne ©2007

Java Threads

0O Java threads are managed by the JVM

0 Java threads may be created by:
= Implementing the Runnable interface

public interface Runmnable

{
}

public abstract void run(];

4N ,:v e
Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.17 Silberschatz, Galvin and Gagne ©2007

Java Threads - Example Program

class Mutablelnteger
{
private int value;
public int getValue() {
return value;

public void setValue(int value) {
this.value = value;

}
}

class Summation implements Runnable
{
private int upper;
private MutableInteger sumValue;
public Summation(int upper, MutableInteger sumValue) {
this.upper = upper;
this.sumValue = sumValue;
}
public void run() {
int sum = 0;
for (int i = 0; i <= upper; i++)
Bum += 1i;
sumValue.setValue(sum) ;
}
1

#,

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 418 Silberschatz, Galvin and Gagne ©2007

Java Threads - Example Program

public class Driver
: public static void main(String[] args) {
if (args.length > 0) {
if (Integer.parselnt(args[0]) < 0)
System.err.println(args[0] + " must be >= 0.");
else {
// create the object to be shared
MutableInteger sum = new MutableInteger();
int upper = Integer.parselnt(args[0]);
Thread thrd = new Thread(new Summation(upper, sum));
thrd.start();
try {
thrd. join();
System.out.println
("The sum of "+upper+" is "+sum.getValue());
} catch (InterruptedException ie) { }

}
}

else
System.err.println("Usage: Summation <integer value>");

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.19 Silberschatz, Galvin and Gagne ©2007

Java Thread States

available

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.20 Silberschatz, Galvin and Gagne ©2007

Java Threads - Producer-Consumer

public class Factory

{

public Factory() {
/{/ First create the message buffer.
Channel mailBox = new MessageQueue();

// Create the producer and consumer threads and pass
/{/ each thread a reference to the mailBox cbject.
Thread producerThread = new Thread(

new Producer(mailBox));
Thread consumerThread = new Thread(

new Consumer (mailBox));

// Start the threads.
producerThread.start();
consumerThread.start();

}

public static void main(String args[]) {
Factory server = mew Factory();

}

Silberschatz, Galvin and (;agr{e ©2007

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.21

Java Threads - Producer-Consumer

class Producer implements Rumnable

{

private Channel mbox;

public Producer(Channel mbox) {
this.mbox = mbox;

}

public veid run() {
Date message;

while (true) {
// nap for awhile
SleepUtilities.nap();

// produce an item and enter it into the buffer
message = mew Date();

System.out.println("Producer produced " + message);
mbox.send (message) ;

#,

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.22 Silberschatz, Galvin and Gagne ©2007

Java Threads - Producer-Consumer

class Consumer implements Runnable

{

private Channel mbox;

public Consumer (Channel mbox) {
this.mbox = mbox;
}

public void run() {
Date message;

while (true) {
// nap for awhile
SleepUtilities.nap();

// consume an item from the buffer
message = (Date)mbox.receive();

if (message != null)
System.out.println("Consumer consumed " + message);

#,

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.23 Silberschatz, Galvin and Gagne ©2007

Threading Issues

Semantics of fork() and exec() system calls
Thread cancellation

Signal handling

Thread pools

Thread specific data

Scheduler activations

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.24 Silberschatz, Galvin and Gagne ©2007

Threading Issues — Semantics of fork() and exec()

0o Multithread HEJ%” Ul A fork()S
threadE MMHE 2401D1? OlLISH 2
S Aol Al A& AQIDL?

ron

Ct&H, 8t JH 2

S&¢ct
£ mu Ihthread%

o 5 HC Al

43
Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.25 Silberschatz, Galvin and Gagne ©2007

Threading Issues — Thread Cancellation

O Terminating a thread before it has

finished

= O£ =8, Hd X =S0] OIOIE /IOl A
ZAolCHF] S 8t MIEDH Z2E

PN
n =3 ERHUM ALHE XL stop= 26t &

lllllll

HAZ
32

0

0 Two general approaches:

= Asynchronous cancellation terminates the target
thread immediately

= Deferred cancellation allows the target thread to
periodically check if it should be cancelled

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.26 Silberschatz, Galvin and Gagne ©2007

Thread Cancellation

Deferred cancellation in Java
Interrupting a thread

Thread thrd = new Thread(new InterruptibleThread());
thrd.start();

"

thrd. interrupt();

#,

D

Operating System Concepts with Java — 7t Edition, Nov 15, 2006 4.27 Silberschatz, Galvin and Gagne ©2007

Thread Cancellation

Deferred cancellation in Java
Checking interruption status

class InterruptibleThread implements Runnable

{

FELS

* This thread will continue to run as long

* as it is not interrupted.

*/

public void run() {

while (true) {

FE:
* do some work for awhile
* ,

*/

if (Thread.currentThread().isInterrupted()) {
System.out.println("I’m interrupted!");
break;

}

// clean up and terminate

}
}

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.28 Silberschatz, Galvin and Gagne ©2007

Signal Handling

O Signal
m UnixOlA S8 Event)t 2HSSS 22lJ] 2ol
AME &= &2 (Wl Windows Message)
o signal handler? X2l =A
1. Signal0| £& event(i| 2lolf A=
2. SignalO] S& Z2AHAN MEE
3. SignalO| X 2l&

m ProcessUl Al 2| Signal X 2| & &4 ALSt

Signal0| 8 =& =& Thread(i| &=
Process®H 0l Q= 2= Threadlll &= &

Process 22| Ct== Thread0ll Hl & & &

_1 ProcessOfl 8&%l= 2 E Signal2 X2l& S&
ThreadE X &

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.29 Silberschatz, Galvin and Gagne ©2007

Thread Pools

O Create a number of threads in a pool where
they await work

O Advantages:

A=

= = : Usually slightly faster to service a
request with an existing thread than create
a new thread

n AIAE AR 222 stAH £ 8 : Allows the
number of threads in the application(s) to
be bound to the size of the pool

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.30 Silberschatz, Galvin and Gagne ©2007

Thread Pools

O Java provides 3 thread pool architectures:

1. Single thread executor - pool of size 1.

static ExecutorService newSingleThreadExecutor()

2. Fixed thread executor - pool of fixed size.

static ExecutorService newFixedThreadPool (int nThreads)

3. Cached thread pool - pool of unbounded size

static ExecutorService newCachedThreadPool()

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.31 Silberschatz, Galvin and Gagne ©2007

Thread Pools

A task to be serviced in a thread pool

public class Task implements Runnable
{
public void run() {
System.out.println("I am working on a task.");

}
}

#,

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.32 Silberschatz, Galvin and Gagne ©2007

Thread Pools

Creating a thread pool in Java

impert java.util.concurrent.*;

public class TPExample

{

public static void main(String[] args) {
int numTasks = Integer.parselnt(args[0].trim());

// create the thread pool
ExecutorService pool = Executors.newCachedThreadPool();

// run each task using a thread in the pool
for (int i = 0; i < numTasks; i++)
pool .execute(new Task());

// Shut down the pool. This shuts down the pool only
// after all threads have completed.
pool.shutdown() ;

Silberschatz, Galvin and (gagr{e ©2007

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.33

Thread Specific Data

O Allows each thread to have its own copy of
data

O Useful when you do not have control over the
thread creation process (i.e., when using a
thread pool)

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.34 Silberschatz, Galvin and Gagne ©2007

Thread Specific Data

Thread-specific data in Java.

clagss Service

{

private static Threadlocal errorlode =
new ThreadLocal();

public static void tramsaction() {

try {
FEZ:

* gome operation where an error may occur

*f.

catch (Exception e) {
errorCode.set (&) ;
}

}

e
* get the error code for this transacticn
*/
public static Object getErrorCode() {
return errorCode.get();
}

}

#,

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.35 Silberschatz, Galvin and Gagne ©2007

Scheduler Activations

O Scheduler Activation2| =&

= M:M and Two-level model==
Thread 2t Application= 1t 2| E Al
SH2 Foh AIEE = 2
m S 22 Scheduler activations provide upcalls
a communication mechanism from the kernel to

the thread library

This communication allows an application to
maintain the correct number kernel threads

+——— yser thread

LWP | =— lightweight process

r"l'\
\ K j.'*—kernel thread

Operating System Concepts with Java — 7t Edition, Nov 15, 2006 4.36 Silberschatz, Galvin and Gagne ©2007

= 3 A Al Al

O SolarisOl Al Thread 2t Process2| 23|

Operating Syste

21

syscall()

Process
user user
thread thread
Lightweight Lightweight
process (LWP) [| process (LWP)
Kernel Kernel
threacd thread

syscall()

System calls

Kernel

Hardware

m Concepts with Java — 7t Edition, Nov 15, 2006

4.37

Figure 4.15 Processes and Threads in Solaris [MCDO07]

Silberschatz, Galvin and G:agr{e ©2007

= 3 A Al Al

O Unix2 Solaris@| Thread Al# Process®l Hl 1
UNIX Process Structure Solaris Process Structure

Solaris replaces
the processor state
block with a list of
LWPs

Figure 4.16 Process Structure in Traditional UNIX and Solaris [LEWI96]

Operating System C igne ©2007

= 3 A Al Al

O Solarist| A2l Thread 2 &

thread create(}

swtch{)

syscall()

preempt {}

wakeup(}

RN

prun(} o pstop() exit(}

Figure 4.17 Solaris Thread States [MCDO07]

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.39 Silberschatz, Galvin and Gagne ©2007

= 3 A Al Al

O LinuxO|l A2l Process/Thread &2 &!

Figure 4.18 Linux Process/Thread Model

#,

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.40 Silberschatz, Galvin and Gagne ©2007

SAMMN AHdl: Windows XP Threads

O Implements the one-to-one mapping
O Each thread contains
= Athreadid
= Register set
= Separate user and kernel stacks
= Private data storage area

O The register set, stacks, and private storage
area are known as the context of the threads

Operating System Concepts with Java — 7t Edition, Nov 15, 2006 4.41 Silberschatz, Galvin and Gagne ©2007

SAM KM Atdl: Windows XP Threads

ETHREAD
thread start
address
pointer to
parent process KTHREAD
scheduling
and
synchronization
. information
: kernel TEB
stack
= thread identifier
. user
. stack
thread-local
storage
kernel space user space

Operating System Concepts with Java — 7th Edition, Nov 15, 2006

4.42

&

Silberschatz, Galvin and G'agn—e ©2007

SAMH M Atdl: Linux Threads

O Linux refers to them as tasks rather than
threads

O Thread creation is done through clone()
system call

O clone() allows a child task to share the
address space of the parent task

(process)
flag meaning
CLONE FS5 File-system information is shared.
CLONE VM The same memory space is shared.
CLONE SIGHAND Signal handlers are shared.
CLONE FILES The set of open files is shared.

Operating System Concepts with Java — 7t Edition, Nov 15, 2006 4.43 Silberschatz, Galvin and Gagne ©2007

0 Al : Thread Echo Server

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 . Silberschatz, Galvin and Gagne ©2007

0 Al : Thread Echo Server

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 . Silberschatz, Galvin and Gagne ©2007

m 22| Echo ServerE &0l H A AHE & AHGHAIL
m Y= AFRAA =X == A2
=9 dH= Akt 2
m CEE= L2 s

IZI

m clEE L% (hwp):

m 1page: 0|, &t 2| LE K=

®m 2page : source

m 3page: &l o™
kwangwoo@gmail.com | & &&= &=
2 A Xl Hl] Calc Server-060303

Silberschatz, Galvin and G:agr{e ©2007

ZE HE 28

g 0 RIS

4.46

Operating System Concepts with Java — 7th Edition, Nov 15, 2006

End of Chapter 4

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 Silberschatz, Galvin and Gagne ©2007

