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Threads 2

O A thread (or lightweight process) is a basic unit of CPU
utilization; it consists of:

- thread ID

- program counter
- register set

- stack space

O A thread shares with its peer threads its:
- code section
- data section
- operating-system resources
collectively known as a task.

O A traditional or heavyweight process is equal to a task with
one thread
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Threads 2
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Threads 2
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Single and Multithreaded Processes

code

data

files

registers

stack

thread — ;

single-threaded process

code data files
registers ||| registers ||| registers
stack stack stack
i—

— thread

multithreaded process

Operating System Concepts with Java — 7th Edition, Nov 15, 2006

4.7

A

Silberschatz, Galvin and (gagr{e ©2007



Benefits

O Responsiveness

= eg) multi-threaded Web - if one thread is blocked (eg network) another thread
continues (eg display)

O Resource Sharing

= nthreads can share binary code, data, resource of the process (files, crt, ...)

0o Economy
m creating and context switching thread (rather than a process)
m Solaris:  306H 54

o Utilization of MP Architectures

m each thread may be running in parallel on a different processor
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User and Kernel Threads

0 User Thread

= Thread management done by user-level
threads library
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User and Kernel Threads

O Kernel Thread
= Supported by the Kernel

s HE ==0A 22|20 41t
A= SH AAHlEE 2 5 RUS

= Examples
- Windows 95/98/NT/2000
- Solaris - o
-TruB4 UNIX S5 5ac e yan mace =2 =6
‘ - BeOS
e Linux
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User and Kernel Threads

O Some are supported by kernel

eg) Windows 95/98/NT Kernel
Solaris — Threads
Digital UNIX

= Others are supported by library —> Threads
eg) POSIX Pthreads

Mach C-threads
Solaris threads

4*%m Some are real-time threads
& s
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Multithreading Models

Mapping user threads to kernel threads:
o Many-to-One
O One-to-One

o Many-to-Many

= Two-level Model : Many-to-Many £ 22| H&

‘l ‘l' -
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Many-to-One

O Many user-level threads mapped to single
kernel thread

O Examples:
m Solaris Green Threads
m GNU Portable Threads g g g

<«——user thread

k ) «=—— kernel thread

43 ,:v s
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One-to-One

O Each user-level thread maps to kernel thread
O Examples

= Windows NT/XP/2000

= Linux

= Solaris 9 and later

<«—— user thread

é é é é «—— kernel thread

1
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Many-to-Many Model

O Allows many user level threads to be mapped to many
kernel threads

O Allows the operating system to create a sufficient
number of kernel threads

= Solaris prior to version 9
= Windows NT/2000 with the ThreadFiber package

S
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Two-level Model

o Similar to M:M, except that it allows a user thread
to be bound to kernel thread

O Examples
m |[RIX, HP-UX, True4 UNIX, Solaris 8 and earlier

; é «—— yser thread

° ° ° @ <«—— kernel thread
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Java Threads

0O Java threads are managed by the JVM

0 Java threads may be created by:
= Implementing the Runnable interface

public interface Runmnable

{
}

public abstract void run(];

4N ,:v e
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Java Threads - Example Program

class Mutablelnteger
{
private int value;
public int getValue() {
return value;

public void setValue(int value) {
this.value = value;

}
}

class Summation implements Runnable
{
private int upper;
private MutableInteger sumValue;
public Summation(int upper, MutableInteger sumValue) {
this.upper = upper;
this.sumValue = sumValue;
}
public void run() {
int sum = 0;
for (int i = 0; i <= upper; i++)
Bum += 1i;
sumValue.setValue(sum) ;
}
1

#,
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Java Threads - Example Program

public class Driver
: public static void main(String[] args) {
if (args.length > 0) {
if (Integer.parselnt(args[0]) < 0)
System.err.println(args[0] + " must be >= 0.");
else {
// create the object to be shared
MutableInteger sum = new MutableInteger();
int upper = Integer.parselnt(args[0]);
Thread thrd = new Thread(new Summation(upper, sum));
thrd.start();
try {
thrd. join();
System.out.println
("The sum of "+upper+" is "+sum.getValue());
} catch (InterruptedException ie) { }

}
}

else
System.err.println("Usage: Summation <integer value>");
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Java Thread States

available
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Java Threads - Producer-Consumer

public class Factory

{

public Factory() {
/{/ First create the message buffer.
Channel mailBox = new MessageQueue();

// Create the producer and consumer threads and pass
/{/ each thread a reference to the mailBox cbject.
Thread producerThread = new Thread(

new Producer(mailBox));
Thread consumerThread = new Thread(

new Consumer (mailBox));

// Start the threads.
producerThread.start();
consumerThread.start();

}

public static void main(String args[]) {
Factory server = mew Factory();

}
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Java Threads - Producer-Consumer

class Producer implements Rumnable

{

private Channel mbox;

public Producer(Channel mbox) {
this.mbox = mbox;

}

public veid run() {
Date message;

while (true) {
// nap for awhile
SleepUtilities.nap();

// produce an item and enter it into the buffer
message = mew Date();

System.out.println("Producer produced " + message);
mbox.send (message) ;

#,
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Java Threads - Producer-Consumer

class Consumer implements Runnable

{

private Channel mbox;

public Consumer (Channel mbox) {
this.mbox = mbox;
}

public void run() {
Date message;

while (true) {
// nap for awhile
SleepUtilities.nap();

// consume an item from the buffer
message = (Date)mbox.receive();

if (message != null)
System.out.println("Consumer consumed " + message);

#,
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Threading Issues

Semantics of fork() and exec() system calls
Thread cancellation

Signal handling

Thread pools

Thread specific data

Scheduler activations
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Threading Issues — Semantics of fork() and exec()
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Threading Issues — Thread Cancellation

O Terminating a thread before it has

finished
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0 Two general approaches:

= Asynchronous cancellation terminates the target
thread immediately

= Deferred cancellation allows the target thread to
periodically check if it should be cancelled
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Thread Cancellation

Deferred cancellation in Java
Interrupting a thread

Thread thrd = new Thread(new InterruptibleThread());
thrd.start();

"

thrd. interrupt();

#,

D
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Thread Cancellation

Deferred cancellation in Java
Checking interruption status

class InterruptibleThread implements Runnable

{

FELS

* This thread will continue to run as long

* as it is not interrupted.

*/

public void run() {

while (true) {

FE:
* do some work for awhile
* ,

*/

if (Thread.currentThread().isInterrupted()) {
System.out.println("I’m interrupted!");
break;

}

// clean up and terminate

}
}
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Signal Handling

O Signal
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Thread Pools

O Create a number of threads in a pool where
they await work

O Advantages:

A=

= = : Usually slightly faster to service a
request with an existing thread than create
a new thread

n AIAE AR 222 stAH £ 8 : Allows the
number of threads in the application(s) to
be bound to the size of the pool
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Thread Pools

O Java provides 3 thread pool architectures:

1. Single thread executor - pool of size 1.

static ExecutorService newSingleThreadExecutor()

2. Fixed thread executor - pool of fixed size.

static ExecutorService newFixedThreadPool (int nThreads)

3. Cached thread pool - pool of unbounded size

static ExecutorService newCachedThreadPool()
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Thread Pools

A task to be serviced in a thread pool

public class Task implements Runnable
{
public void run() {
System.out.println("I am working on a task.");

}
}

#,

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.32 Silberschatz, Galvin and Gagne ©2007




Thread Pools

Creating a thread pool in Java

impert java.util.concurrent.*;

public class TPExample

{

public static void main(String[] args) {
int numTasks = Integer.parselnt(args[0].trim());

// create the thread pool
ExecutorService pool = Executors.newCachedThreadPool();

// run each task using a thread in the pool
for (int i = 0; i < numTasks; i++)
pool .execute(new Task());

// Shut down the pool. This shuts down the pool only
// after all threads have completed.
pool.shutdown() ;

Silberschatz, Galvin and (gagr{e ©2007
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Thread Specific Data

O Allows each thread to have its own copy of
data

O Useful when you do not have control over the
thread creation process (i.e., when using a
thread pool)
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Thread Specific Data

Thread-specific data in Java.

clagss Service

{

private static Threadlocal errorlode =
new ThreadLocal();

public static void tramsaction() {

try {
FEZ:

* gome operation where an error may occur

*f.

catch (Exception e) {
errorCode.set (&) ;
}

}

e
* get the error code for this transacticn
*/
public static Object getErrorCode() {
return errorCode.get();
}

}

#,
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Scheduler Activations

O Scheduler Activation2| =&

= M:M and Two-level model==
Thread 2t Application= 1t 2| E Al
SH2 Foh AIEE = 2
m S 22 Scheduler activations provide upcalls
a communication mechanism from the kernel to

the thread library

This communication allows an application to
maintain the correct number kernel threads

+——— yser thread

LWP | =— lightweight process

r"l'\
\ K j.'*—kernel thread
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Figure 4.15 Processes and Threads in Solaris [MCDO07]
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UNIX Process Structure Solaris Process Structure

Solaris replaces
the processor state
block with a list of
LWPs

Figure 4.16 Process Structure in Traditional UNIX and Solaris [LEWI96]
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Figure 4.17 Solaris Thread States [MCDO07]
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O LinuxO|l A2l Process/Thread &2 &!

Figure 4.18 Linux Process/Thread Model
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SAMMN AHdl: Windows XP Threads

O Implements the one-to-one mapping
O Each thread contains
= Athreadid
= Register set
= Separate user and kernel stacks
= Private data storage area

O The register set, stacks, and private storage
area are known as the context of the threads
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SAM KM Atdl: Windows XP Threads

ETHREAD
thread start
address
pointer to
parent process KTHREAD
scheduling
and
synchronization
. information
: kernel TEB
stack
= thread identifier
. user
. stack
thread-local
storage
kernel space user space
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SAMH M Atdl: Linux Threads

O Linux refers to them as tasks rather than
threads

O Thread creation is done through clone()
system call

O clone() allows a child task to share the
address space of the parent task

(process)
flag meaning
CLONE FS5 File-system information is shared.
CLONE VM The same memory space is shared.
CLONE SIGHAND Signal handlers are shared.
CLONE FILES The set of open files is shared.
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0 Al : Thread Echo Server
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End of Chapter 4
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