Chapter 3: Process
[

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 Silberschatz, Galvin and Gagne ©2007

Chapter 3: Processes

Process Concept

Process Scheduling

Operations on Processes

Cooperating Processes

Interprocess Communication
Communication in Client-Server Systems

O O O O O O

2.2 Silberschatz, Galvin and Gagne ©2007

Process Concept

0O Process: =ai=0l T)eH S A|S2E A|AEINH A
A O T

O An operating system executes a variety of programs:

= Batch system — jobs w = C} Process
= Time-shared systems — user programs or tasks

O Process != Program
= Program= L|A0 M&E LHE 2 WE) &2 passive
entity@l BtH Process= &dle HHHE N & ol= program
counter?t H2t= IR Hes D ' i

O A process includes:
m program counter
= stack

= data section

Process vs. Thread?

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 23 Silberschatz, Galvin and Gagne ©2007

Process Concept - Process in Memory

Operating System Concepts with Java — 7th Edition, Nov 15, 2006

max
SIACK <1 a0 Xjoipi4gl BINEI2IF HEE
heap s— malloc s s&22 &Y% = UoIeHME
data S—
&S H 2~ 2 static &
text
0
2.4 Silberschatz, Galvin and Gge ©2007

0o Heap U} Stack
Heap : run-timeAl0ll 2JJI 28 &= 24
Ol malloc() & ==Lt C++2| new & &t
Stack : ZUILAI0N It Z2HEHU=

22 (R ASH

—/ — T

#include <stdio.h>
int A, B;

main()

{

inta = 0;
int b = 0;

int *p1 = NULL; SEEHE ZPEHE Fadl 245
int *p2 = NULL;

pl = (int*)malloc(sizeof(A));
p2 = (int*)malloc(sizeof(A));
printf("& < H=0| A8 E2SH\n");
printf("%d\n", &A);
printf("%d\n", &B); Presz any key to continue
printf("s& Y& EZ2IHS =48t EE\n");
printf("%d\n", p1);

printf("%d\n", p2),

printf("XIS B2 F=AgL E2S\n");
printf("%d\n", &a);

printf("%d\n", &b);

free(pl);

\ggé }free(p2);

[EX] ESE=PN;

Process Concept - Process State

O As a process executes, it changes state

new: The process is being created.

running: Instructions are being executed.

waiting: The process is waiting for some event to occur.
ready: The process is waiting to be assigned to a process.
terminated: The process has finished execution.

admitted interrupt terminated

scheduler dispatch

I/O or event completion I/O or event wait

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 2.6 Silberschatz, Galvin and Gagne ©2007

Process Concept - Process Control Block (PCB)

Information associated with each process.
O Process state
Program counter pointer
CPU registers

CPU scheduling information
Memory-management information
Accounting information registers
|/O status information

process
state

process number

program counter

O O 0O O O 0O

memory limits

list of open files

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 2.7 Silberschatz, Galvin and Gagne ©2007

Process Concept —
CPU Switch From Process to Process

process P, operating system process P,

interrupt or system call

executing i / l
T

save state into PCB0

reload state from F’CB1

interrupt or system call

Y

save state into PCB1

reload state from F’CB0

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 2.8 Silberschatz, Galvin and Gagne ©2007

Process Concept —

Linux0ll &

—

IS NAHE

O Linux Process : task_struct
O http://www.ibm.com/developerworks/kr/library/I-linux-

process-management/index.html

struct task_struct {

volatile long state;
void *stack;

unsigned int flags;

int prio, static_prio;
struct list_head tasks;

struct mm_struct *mm, *active_mm:;

pid_t pid;
pid_t tgid;

struct task_struct *real_parent;
char comm[TASK_COMM_LEN];
struct thread_struct thread;

struct files_struct *files;

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 29

Silberschatz, Galvin and Gag

ne ©2007

Process Scheduling —
Process Scheduling Queues

O Job queue — set of all processes in the system.

O Ready queue — set of all processes residing in main
memory, ready and waiting to execute.

O Device queues — set of processes waiting for an 1/O
device.

O Process migration between the various queues.

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 2.10 Silberschatz, Galvin and Gagne ©2007

Process Scheduling — Schedulers

O Long-term scheduler (or job scheduler) — selects which
processes should be brought into the ready queue.

O Short-term scheduler (or CPU scheduler) — selects which
process should be executed next and allocates CPU.

main memory

optional loading

2 4
Operating System Concepts with Java — 7th Edition, Nov 15, 2006 2.11 Silberschatz, Galvin and Gagne ©2007

Process Scheduling —Schedulers

m Long-term scheduler (or job scheduler) — selects which processes
should be brought into the ready queue.
= Giving Memory

= very infrequently (seconds, minutes)
= (may be slow).

m Short-term scheduler (or CPU scheduler) — selects which process
should be executed next and allocates CPU.

= Giving CPU
m very frequently (milliseconds) = (must be fast).

B Mid-term scheduler — Swapping2| 1124

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 2.12 Silberschatz, Galvin and Gagne ©2007

Process Scheduling —
Ready Queue And Various I/O Device Queues

______________ queue header PCB,

i Job . head

i Queue : tail registers registers
optional

Device Queug

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 2.13 Silberschatz, Galvin and Gagne ©2007

Process Scheduling —
Representation of Process Scheduling

- : ready queue CPU "
optional
/O queue &—— 1/Orequest [&—j
time slice
expired
child fork a
@7 child [
interrupt wait for an
occurs interrupt

o <
Operating System Concepts with Java — 7th Edition, Nov 15, 2006 2.14 Silberschatz, Galvin and Gagne ©2007

Process Scheduling —
Addition of Medium Term Scheduling

swap in partially executed swap out
swapped-out processes
ready queue @L » eng
I/O waiting
gueues

Y'Yy

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 2.15 Silberschatz, Galvin and Gagne ©2007

Process Scheduling —Schedulers (Cont.)

0 Processes can be described as either:

m |/O-bound process — spends more time doing I/O than computations,
many short CPU bursts.

m CPU-bound process — spends more time doing computations; few very
long CPU bursts.

: b
Silberschatz, Galvin and Gagne ©2007

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 2.16

Process Scheduling —
Context Switch

0 When CPU switches to another process, the system must
save the state of the old process and load the saved state
for the new process.

O Context-switch time is overhead; the system does no
useful work while switching.

O Time dependent on hardware support.

=280l Context Switch

=> Sun Ultra SPARCS2| B2 01 IS HdAAH &&= HEotH HEZ2 & CPUS
overheadE & 2AZ

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 2.17 Silberschatz, Galvin and Gagne ©2007

Operation on Process

O Process Creation

O Process Termination

y
Operating System Concepts with Java — 7th Edition, Nov 15, 2006 2.18 Silberschatz, Galvin and Gagne ©2007

Operation on Process — Process Creation

O Parent process create children processes, which, in turn create
other processes, forming a tree of processes.

O Resource sharing strategies
= Parent and children share all resources.
= Children share subset of parent’s resources.
= Parent and child share no resources.

O Execution
= Parent and children execute concurrently.
= Parent waits until children terminate.

J 2 3 S0
Operating System Concepts with Java — 7th Edition, Nov 15, 2006 2.19 Silberschatz, Galvin and Gagne ©2007

Operation on Process — Process Creation (Cont.)

O Address space
= Child duplicate of parent.
= Child has a program loaded into it.

O UNIX examples
m fork system call creates new process

m exec system call used after a fork to replace the process’ memory
space with a new program.

ﬁ@tﬁiﬁ@n Say«stnem Java — 7th Edition, Nov 15, 2006 2.20 Silberschatz, Galvin and Gagne ©2007

Process Creation in UNIX

parent h resumes

wait

child exec() »

ﬁaatﬁiﬁ@n Sycstlem Java — 7th Edition, Nov 15, 2006 2.21 Silberschatz, Galvin and Gagne ©2007

C Program Forking Separate Process

int main()
{
Pid_t pid;
[* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
exit(-1);
}
else if (pid == 0) { /* child process */
execlp("/bin/ls", "Is", NULL);
}
else { /* parent process */

[* parent will wait for the child to
complete */

wait (NULL);
printf ("Child Complete");
exit(0);

2.22 Silberschatz, Galvin and Gagne ©2007

C Program Forking Separate Process

O Fork — Before and After

Parent

Parent

main()

{
—1— fork();

!!!!!!

pid = ...l

main()
{
f?rk{};

_.._p1d=__.-

}

2.23

Child

main()
{
f?rk{l;

__..,.pld= it

}

5 ". “ L
Silberschatz, Galvin and Gagne ©2007

Processes Tree on a UNIX System

pagedaemon swapper

)

b TR .
A b & e
£ L Rlies 7
g o R 3 iy o
T < o y
: Ny oA ¢
P = LK
= sag™)

ﬁ@tﬂ.ﬁ@“ Sytstlem Java — 7th Edition, Nov 15, 2006 2.24 Silberschatz, Galvin and Gagne ©2007

A tree of processes on a typical Solaris

' Csh
pid = 1400

pid = 7785

Netscape I emacs
pid =8105

)lt

/) _ 5 2%
ﬁ@tﬁiﬁ@n Saystnem Java — 7th Edition, Nov 15, 2006 2.25 Silberschatz, Galvin and Gagne ©2007

Process Termination

O Process executes last statement and asks the operating
system to decide it (exit).

= Output data from child to parent (via wait).
» Process’ resources are deallocated by operating system.

7
il

o ParentJt execution of children processes= & = of
4 2 (abort).
= Child has exceeded allocated resources.
m Task assigned to child is no longer required.
= Parent is exiting.

Operating system does not allow child to continue if its
parent terminates.

Cascading termination.

3
<
3 Y
B TR p
N :

et

%ﬁ@tﬁiﬁ@“ Syﬁtem Java — 7t Edition, Nov 15, 2006 2.26 Silberschatz, Galvin and Gagne ©2007

Interprocess Communication(IPC)

O

=g/ & L Z LA - Independent process cannot affect or be affected
by the execution of another process.

&5 & I 2 A4 - Cooperating process can affect or be affected by
the execution of another process

Iz NAZEEES MEote 0=

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 2.27 Silberschatz, Galvin and Gagne ©2007

Interprocess Communication(IPC)

o IPCE st JI2&02! J|IY
n 5% HEZ2l(shared memory)
o MAXRRE AP AL S=otE W22 E ALE

olst X R S N
- %Eou_l' Tﬁéaa r=)

I S

Qli

o
TT

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 2.28 Silberschatz, Galvin and Gagne ©2007

22 MH 2 2l-Producer-Consumer Problem

O Paradigm for cooperating processes, producer process produces
information that is consumed by a consumer process.

= unbounded-buffer places no practical limit on the size of the buffer.
= bounded-buffer assumes that there is a fixed buffer size.

R e R

producer l consumer

unbounded-buffer(Ideal Case)
bounded-buffer(Practical Case)

2 4
Operating System Concepts with Java — 7th Edition, Nov 15, 2006 2.29 Silberschatz, Galvin and Gagne ©2007

S=0H2ce]-
Bounded-Buffer — Shared-Memory Solution

O Shared data
#define BUFFER_SIZE 10
Typedef struct {

} item;

item buffer[BUFFER_SIZE];
intin = 0;

int out = 0;

; =G
2.30 Silberschatz, Galvin and Gagne ©2007

S rUl=Cl-

Bounded-Buffer— Producer Process

item nextProduced:

while (1) {
while (((in + 1) % BUFFER_SIZE) == out)
; [* do nothing */
buffer[in] = nextProduced;
in=(in +1) % BUFFER_SIZE;

....
R

)_ ,‘

ﬁ@tﬂ.ﬁ@n S,y(stem Java — 7th Edition, Nov 15, 2006 2.31 Silberschatz, Galvin and Gagne ©2007

S rUl=Cl-

Bounded-Buffer— Consumer Process

item nextConsumed;

while (1) {
while (in == out)
; [* do nothing */
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;

mSolution is correct, but can only use
BUFFER_SIZE-1 elements

oA g

k : o
ﬁ@tﬂ.ﬁ@n S,y(stlem Java — 7th Edition, Nov 15, 2006 2.32 Silberschatz, Galvin and Gagne ©2007

Interprocess Communication (IPC)

—Message Passing-System

O IPC : Mechanism for processes to communicate and to synchronize
their actions. : ex. chat program

O Message system — processes communicate with each other without
resorting to shared variables.

O IPC facility provides two operations:
= send(message) — message size fixed or variable
m receive(message)

o If P and Q wish to communicate, they need to:
m establish a communication link between them
= exchange messages via send/receive

O Implementation of communication link
= physical (e.g., shared memory, hardware bus)
= logical (e.g., logical properties)

e
A >,
o o ATEE P,
3 Y et -,
A - ,» ﬁf. 5
" oA E
N |

J
et

pﬁﬁ@tﬂ.ﬁ@“ S,ycstem Java — 7t Edition, Nov 15, 2006 2.33 Silberschatz, Galvin and Gagne ©2007

Message Passing System

al
Ikl

W= |7 1A 1A

£

e e

|O

O
O
O
O
O

<) i
0z == O oA

-

2ty S

bl & Sl

BAE BHIHE

ot & = X0 Qe M5
L= JtEZ0] GIAlAl

2.34

5 ". “ L
Silberschatz, Galvin and Gagne ©2007

Communications Model

process A M process A

[— ’
shared Q
gt

process B M process B

kernel M kernel

(@) (b)

pppp
oA S 2y

)_ ,‘

ﬁ@tﬁiﬁ@n Saystnem Java — 7th Edition, Nov 15, 2006 2.35 Silberschatz, Galvin and Gagne ©2007

Direct Communication

O Processes must name each other explicitly:

= send (P, message) — send a message to process P

= receive(Q, message) — receive a message from process Q
O Properties of communication link

= Links are established automatically.

= Alink is associated with exactly one pair of communicating processes.

= Between each pair there exists exactly one link.

= The link may be unidirectional, but is usually bi-directional.
o AsymmetryE Jts

= send(P, message)

= receive(id, message)

Rl

Silberschatz, Galvin and Gagne ©2007

=y
. ¥
- \ ‘., =
i ¥
DT i i
8 |

pﬁﬁ@tﬁiﬁ@n Sy skenm Java - 7 Edition, Nov 15, 2006 2.36

Indirect Communication

O Messages are directed and received from mailboxes (also
referred to as ports).

= Each mailbox has a unique id.

= Processes can communicate only if they share a mailbox.
O Properties of communication link

= Link established only if processes share a common mailbox

= Alink may be associated with many processes.

= Each pair of processes may share several communication
links.

= Link may be unidirectional or bi-directional.

LT
N g TP,
B h e 8
MR o=
e LA c 4
N |

pﬁﬁ@tﬂ.ﬁ@“ S,ycstem Java — 7t Edition, Nov 15, 2006 2.37 Silberschatz, Galvin and Gagne ©2007

Indirect Communication

O Operations
= create a new mailbox
= send and receive messages through mailbox
m destroy a mailbox

O Primitives are defined as:
send(A, message) — send a message to mailbox A
receive(A, message) — receive a message from mailbox A

o =
A, T
7, . 8
¢f ¢
Mo oL S
LA~ ¢
7 = ;‘"

2.38 Silberschatz, Galvin and Gagne ©2007

Indirect Communication

O Mailbox sharing
= P, P, and P, share mailbox A.
= P, sends; P, and P, receive.
= Who gets the message?
O Solutions
= Allow a link to be associated with at most two processes.
= Allow only one process at a time to execute a receive operation.

= Allow the system to select arbitrarily the receiver. Sender is notified
who the receiver was.

ﬁ@tﬁiﬁ@n S>ycstuem Java — 7t Edition, Nov 15, 2006 2.39 Silberschatz, Galvin and Gagne ©2007

Synchronization

O Message passing may be either blocking or non-blocking.

O Blocking is considered synchronous
s S4Iots ZE2NA= UHAXIDE =& Z2HA E£= GHE &A0 2
&I M DHXI blocking &
O Non-blocking is considered asynchronous
u S4IotE ZZAAIGNUHARIE 2D &2 HS HAIAE
O send and receive primitives may be either blocking or non-blocking.

H

ol

30
. ¥
) e,
NY U
AT Y *
g |

%ﬁ@tﬁi S)yﬁtem Java — 7th Edition, Nov 15, 2006 2.40 Silberschatz, Galvin and Gagne ©2007

=1 .(o4

Buffering

O Queue of messages attached to the link; implemented in one of
three ways.

1. Zero capacity — 0 messages
Sender must wait for receiver (rendezvous).

2. Bounded capacity — finite length of n messages
Sender must wait if link full.

3. Unbounded capacity — infinite length
Sender never waits.

A
T ¥,
— P .f;:‘ o
~ - Y -
g A
g

ﬁ@tﬂ.ﬁ@“ Sytstlem Java — 7th Edition, Nov 15, 2006 2.41 Silberschatz, Galvin and Gagne ©2007

IPCZ2| Ol : POSIX &=0I2c

#include <sys/shm.h>
#include <sys/stat. h>
#include <stdio.h>

int main()

* the identifier for the shared memory segment */
int segment_id;
/* aPomter_to ‘the shared memory segment */
char* shared_memo
/* the size (in | Xtesb) of the shared memory segment */
const int size =

/* allocate a shared memorx ment */
segment_id = shmget(IPC_PRIVATE, size, S_IRUSR | S_IWUSR);

/* attach the shared memor\“segment */
shared_memory = (char *) shmat(segment_id, NULL, 0);

/* write a message to the shared memory segment */
sprintf(shared_memory, "Hi there!");

/* now Pl‘lnt out the string from shared memory */
prmtf(%s\n", shared_memory);

/* now detach the shared memory segment */
shmdt(shared_memory);

/* now remove the shared memo l"y segment */
shmctl(segment_id, IPC_RM I ’

return O;

b
C program illustrating POSIX shared-memory API.

Wﬁ@tﬁiﬁ@'ﬂ Syﬁtlem Java — 7t Edition, Nov 15, 2006 2.42 Silberschatz, Galvin and Gagne ©2007

IPC2| 0 : Client-Server Communication

O Sockets
0 Remote Procedure Calls
O Remote Method Invocation (Java)

! ‘| E
o | .
/A)

ﬁaatﬁiﬁ@n Sycstlem Java — 7th Edition, Nov 15, 2006 2.43 Silberschatz, Galvin and Gagne ©2007

IPC2| 0] : Sockets

O A socket is defined as an endpoint for communication.
Concatenation of IP address and port

O The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8
O well known ports
= telnet server : port 23
= ftp server : port 21
= web(http) server : port 80

o Communication consists between a pair of sockets.

O

JavaJl Xl=Sot= AlIIHA &3

1) Connection-oriented(TCP) Socket : Socket Class

2) Connectionless(UDP) Socket : DatagramSocket Class
3) MulticastSocket

30
- T
3) et &
- G
D ¥
20 AL U

43

pﬁﬁ@tﬂ.ﬁ@“ S,ycstem Java — 7t Edition, Nov 15, 2006 2.44 Silberschatz, Galvin and Gagne ©2007

IPC2| (il : Socket Communication

host X
(146.86.5.20)

socket

(146.86.5.2/1625) web server
(161.25.19.8)

socket
(161.25.19.8/80)

30
. ¥
\ B W3 VERS
: A W)
~ 3 ¥
AT Y
g |

%ﬁ@tﬁi S)yﬁtem Java — 7th Edition, Nov 15, 2006 2.45 Silberschatz, Galvin and Gagne ©2007

.'(sty

IPC2] O :

import java.net.*;
import java.io.¥;

public class DateServer
pil:.lblif static void main(String[] args) {
r
gerverSocket sock = new ServerSocket(6013);

// now listen for connections
while (true)
Socket client = sock.accept();

PrintWriter pout = new
PrintWriter(client.getOutputStream(), true);

// write the Date to the socket]
pout.printin(new java.util.Date().toString());

// close the socket and resume
/{ listening for connections
client.close();

zatch (IOException ioe) {
System.err.printin(ioe);

}}

S "~=- ure 3.18 Date server.

%ﬁ@tﬁi Syﬁtem Java - 7t Edition, Nov 15, 2006 2.46 Silberschatz, Galvin and Gagne ©2007

IPC2| 0 :

import java.net.*;
import java.io.*;

public class DateClient

ptlbli}{: static void main(String[] args) {

r

/make connection to server socket. 127.0.0.1 is loopback IP addr
ocket sock = new Socket("127.0.0.1", 6013);

InputStream in = sock.getInputStream();
BufferedReader bin = new .
BufferedReader(new InputStreamReader(in));

é{ read the data from the socket

ring line; _ i

while ((line = bin.readLine()) != null)
System.out.printin(line);

// close the socket connection
sock.close();

catch (IOException ioe) {
System.err.printin(ioe);

}}

Figure 3.19 Date client.

=,
19

1 % it
g TanEn
- h

e

%ﬁ@tﬁiﬁ@'ﬂ Syﬁtem Java - 7t Edition, Nov 15, 2006 2.47 Silberschatz, Galvin and Gagne ©2007

IPC2| (il : Remote Procedure Calls

O Remote procedure call (RPC) abstracts procedure calls between
processes on networked systems.

O Stubs — client-side proxy for the actual procedure on the server.
The client-side stub locates the server and marshalls the parameters.

O The server-side stub receives this message, unpacks the
marshalled parameters, and peforms the procedure on the server.

O

e
s .
N 4 .
sAae ¥ A TS & A
Dl Ll S
W il ! RPN 7R - .
S o s) e 47~ 0
NY Y , e !
g > o T S S
2 _ | vl BA .
{ | e =S % A2
,—_;: 3 sagl

ﬁ@tﬂ.ﬁ@“ Syﬁtlem Java — 7th Edition, Nov 15, 2006 2.48 Silberschatz, Galvin and Gagne ©2007

IPC2| (i : Execution of RPC

user calls kernel
to send RPC
message o
procedure X

kernel sends
message to
matchmaker to
find port number

kernel places
port Pin user
RPC
message

kernel sends
RPC

kernel receives

reply, passes
it to user

messages

- From: client
To: server
Port: matchmaker
Re: address

for RPC X

From: server
To: client
Port: kernel
Re: RPC X
Port: P

From: client
To: server

Port: port P
<contents >

From: RPC
Port: PTo:
client
Port: kernel
<output>

ﬁ@tﬂ.ﬁ@n SVt mm Java - 7 Edition, Nov 15, 2006

2.49

matchmaker
receives
message, looks
up answer

¥

matchmaker
replies to client
with port P

daemon
listening to
port P receives
message

daemon
processes
request and
processes send
output

Silberschatz, Galvin and Gag

%
ne ©2007

IPC2| (il : Remote Method Invocation

0 Remote Method Invocation (RMI) is a Java mechanism similar to
RPCs.

O RMI allows a Java program on one machine to invoke a method on
a remote object.

Java @-
program

o
h
1 % it
- A
2 #
gL 3

%ﬁ@tﬂ.ﬁ@“ S,ycstem Java — 7t Edition, Nov 15, 2006 2.50 Silberschatz, Galvin and Gagne ©2007

IPC2| Ol : Marshalling Parameters

client remote object

val = server.someMethod(A,B) boolean someMethod (Object x, Object y)

{

implementation of someMethod

]

skeleton
N |

}

A, B, someMethod

boolean return value

B A '~‘-..
¢

43

pﬁﬁ@tﬂ.ﬁ@“ S,ycstem Java — 7t Edition, Nov 15, 2006 2.51 Silberschatz, Galvin and Gagne ©2007

