
Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Chapter 3: Process

2.2 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

Chapter 3: Processes

p Process Concept
p Process Scheduling
p Operations on Processes
p Cooperating Processes
p Interprocess Communication
p Communication in Client-Server Systems

2.3 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Process Concept
p Process : 수행중인프로그램,현대시분할시스템에서
작업의단위

p An operating system executes a variety of programs:
n Batch system – jobs
n Time-shared systems – user programs or tasks

p Process != Program
n Program은디스크에저장된파일의내용과같은 passive

entity인반면 Process는실행할명령어를저장하는 program
counter와연관된자원의집합을가진 active entity

p A process includes:
n program counter
n stack
n data section

둘 다 Process

Process vs. Thread?

2.4 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Process Concept - Process in Memory

전역변수와 static변수 저장

malloc 등 동적으로 할당되는 데이터저장

함수의 지역변수와 매개변수가 저장됨

2.5 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Process Concept - Process in Memory

p Heap 과 Stack
n Heap : run-time시에크기가결정되는요소들의저장공간

p c의 malloc() 함수나 C++의 new 연산
n Stack : 컴파일시에크기가결정되어있는요소들이저장되는공간

p 함수의매개변수지역변수

#include <stdio.h>
int A, B;
main()
{
int a = 0;
int b = 0;
int *p1 = NULL;
int *p2 = NULL;
p1 = (int*)malloc(sizeof(A));
p2 = (int*)malloc(sizeof(A));
printf("전역 변수의 주소값 출력\n");
printf("%d\n", &A);
printf("%d\n", &B);
printf("동적할당된 포인터의 주소값 출력\n");
printf("%d\n", p1);
printf("%d\n", p2);
printf("지역 변수의 주소값 출력\n");
printf("%d\n", &a);
printf("%d\n", &b);
free(p1);
free(p2);
}
[출처] [C/C++]Heap 과 Stack 영역|작성자 우기우기

2.6 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Process Concept - Process State

p As a process executes, it changes state
n new: The process is being created.
n running: Instructions are being executed.
n waiting: The process is waiting for some event to occur.
n ready: The process is waiting to be assigned to a process.
n terminated: The process has finished execution.

2.7 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Process Concept - Process Control Block (PCB)

Information associated with each process.
p Process state
p Program counter
p CPU registers
p CPU scheduling information
p Memory-management information
p Accounting information
p I/O status information

2.8 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Process Concept –
CPU Switch From Process to Process

2.9 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Process Concept –
Linux에서의프로세스표현

struct task_struct {

volatile long state;
void *stack;
unsigned int flags;

int prio, static_prio;

struct list_head tasks;

struct mm_struct *mm, *active_mm;

pid_t pid;
pid_t tgid;

struct task_struct *real_parent;

char comm[TASK_COMM_LEN];

struct thread_struct thread;

struct files_struct *files;

...

};

p Linux Process : task_struct
p http://www.ibm.com/developerworks/kr/library/l-linux-

process-management/index.html

2.10 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Process Scheduling –
Process Scheduling Queues

p Job queue – set of all processes in the system.
p Ready queue – set of all processes residing in main

memory, ready and waiting to execute.
p Device queues – set of processes waiting for an I/O

device.
p Process migration between the various queues.

2.11 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Process Scheduling – Schedulers

p Long-term scheduler (or job scheduler) – selects which
processes should be brought into the ready queue.

p Short-term scheduler (or CPU scheduler) – selects which
process should be executed next and allocates CPU.

Unix는 Long term Scheduler가 없음 => 물리적인 제한에 의존함

Job
Queue

optional

Job
Scheduler
(long term)

disk Ready
Queuemain memory

loading

CPU
Scheduler
(short term)

CPU

2.12 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Process Scheduling –Schedulers

n Long-term scheduler (or job scheduler) – selects which processes
should be brought into the ready queue.

è Giving Memory
è very infrequently (seconds, minutes)

Þ (may be slow).

n Short-term scheduler (or CPU scheduler) – selects which process
should be executed next and allocates CPU.
è Giving CPU
n very frequently (milliseconds) Þ (must be fast).

n Mid-term scheduler – Swapping의고려

2.13 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Process Scheduling –
Ready Queue And Various I/O Device Queues

Job
Queue

optional

Device Queue

2.14 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Process Scheduling –
Representation of Process Scheduling

Job
Queue

optional

2.15 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Process Scheduling –
Addition of Medium Term Scheduling

Medium Term Scheduler : 메모리에서 CPU를 위해 적극적으로 경쟁하는 프로세스들을
일시적으로 제거하여 multiprogramming의 정도를 완화하도록 함 => Swapping

2.16 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Process Scheduling –Schedulers (Cont.)

p Processes can be described as either:

n I/O-bound process – spends more time doing I/O than computations,
many short CPU bursts.

n CPU-bound process – spends more time doing computations; few very
long CPU bursts.

2.17 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Process Scheduling –
Context Switch

p When CPU switches to another process, the system must
save the state of the old process and load the saved state
for the new process.

p Context-switch time is overhead; the system does no
useful work while switching.

p Time dependent on hardware support.

효율적인 Context Switch

=> Sun Ultra SPARC의 경우 여러 개의 레지스터 집합을 제공하여 메모리 및 CPU의
overhead를 감소시킴

2.18 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Operation on Process

p Process Creation

p Process Termination

2.19 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Operation on Process – Process Creation

p Parent process create children processes, which, in turn create
other processes, forming a tree of processes.

p Resource sharing strategies
n Parent and children share all resources.
n Children share subset of parent’s resources.
n Parent and child share no resources.

p Execution
n Parent and children execute concurrently.
n Parent waits until children terminate.

2.20 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

Operation on Process – Process Creation (Cont.)

p Address space
n Child duplicate of parent.
n Child has a program loaded into it.

p UNIX examples
n fork system call creates new process
n exec system call used after a fork to replace the process’ memory

space with a new program.

2.21 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

Process Creation in UNIX

2.22 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

C Program Forking Separate Process

int main()
{
Pid_t pid;

/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");
exit(-1);

}
else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);
}
else { /* parent process */

/* parent will wait for the child to
complete */

wait (NULL);
printf ("Child Complete");
exit(0);

}
}

2.23 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

C Program Forking Separate Process

p Fork – Before and After

Operating System

2.24 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

Processes Tree on a UNIX System

2.25 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

A tree of processes on a typical Solaris

2.26 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

Process Termination

p Process executes last statement and asks the operating
system to decide it (exit).
n Output data from child to parent (via wait).
n Process’ resources are deallocated by operating system.

p Parent가 execution of children processes을종료하는
경우 (abort).
n Child has exceeded allocated resources.
n Task assigned to child is no longer required.
n Parent is exiting.

p Operating system does not allow child to continue if its
parent terminates.

p Cascading termination.

2.27 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Interprocess Communication(IPC)

p 독립적프로세스 : Independent process cannot affect or be affected
by the execution of another process.

p 협력적프로세스 : Cooperating process can affect or be affected by
the execution of another process

p 프로세스간협력을제공하는이유

n 정보공유

n 계산가속화

n 모듈성

n 편의성

2.28 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Interprocess Communication(IPC)

p IPC를위한기본적인기법
n 공유메모리(shared memory)

p 생산자와소비자간의공유하는메모리를사용하여연동

§ 동일한주소공간을공유

n 메시지전달(message passing)
p 동일한주소공간을공유하지않고통신하며동기화

2.29 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

공유메모리-Producer-Consumer Problem

p Paradigm for cooperating processes, producer process produces
information that is consumed by a consumer process.
n unbounded-buffer places no practical limit on the size of the buffer.
n bounded-buffer assumes that there is a fixed buffer size.

MS Word
Printing
Process

Printer
Process

producer consumer

buffer

unbounded-buffer(Ideal Case)
bounded-buffer(Practical Case)

2.30 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

공유메모리-
Bounded-Buffer – Shared-Memory Solution

p Shared data
#define BUFFER_SIZE 10
Typedef struct {

. . .
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;

2.31 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

공유메모리-
Bounded-Buffer– Producer Process

item nextProduced;

while (1) {
while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */
buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;

}

2.32 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

공유메모리-
Bounded-Buffer– Consumer Process

item nextConsumed;

while (1) {
while (in == out)

; /* do nothing */
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;

}

nSolution is correct, but can only use
BUFFER_SIZE-1 elements

2.33 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

Interprocess Communication (IPC)
- Message Passing System

p IPC : Mechanism for processes to communicate and to synchronize
their actions. : ex. chat program

p Message system – processes communicate with each other without
resorting to shared variables.

p IPC facility provides two operations:
n send(message) – message size fixed or variable
n receive(message)

p If P and Q wish to communicate, they need to:
n establish a communication link between them
n exchange messages via send/receive

p Implementation of communication link
n physical (e.g., shared memory, hardware bus)
n logical (e.g., logical properties)

2.34 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

Message Passing System

p 직접또는간접통신

p 대칭또는비대칭통신

p 자동또는명시적버퍼링

p 복사에의한전송또는참조에의한전송

p 고정길이또는가변길이메세지

2.35 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

Communications Model

2.36 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

Direct Communication

p Processes must name each other explicitly:
n send (P, message) – send a message to process P
n receive(Q, message) – receive a message from process Q

p Properties of communication link
n Links are established automatically.
n A link is associated with exactly one pair of communicating processes.
n Between each pair there exists exactly one link.
n The link may be unidirectional, but is usually bi-directional.

p Asymmetry도가능
n send(P, message)
n receive(id, message)

2.37 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

Indirect Communication
p Messages are directed and received from mailboxes (also

referred to as ports).
n Each mailbox has a unique id.
n Processes can communicate only if they share a mailbox.

p Properties of communication link
n Link established only if processes share a common mailbox
n A link may be associated with many processes.
n Each pair of processes may share several communication

links.
n Link may be unidirectional or bi-directional.

2.38 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

Indirect Communication

p Operations
n create a new mailbox
n send and receive messages through mailbox
n destroy a mailbox

p Primitives are defined as:
send(A, message) – send a message to mailbox A
receive(A, message) – receive a message from mailbox A

2.39 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

Indirect Communication

p Mailbox sharing
n P1, P2, and P3 share mailbox A.
n P1, sends; P2 and P3 receive.
n Who gets the message?

p Solutions
n Allow a link to be associated with at most two processes.
n Allow only one process at a time to execute a receive operation.
n Allow the system to select arbitrarily the receiver. Sender is notified

who the receiver was.

2.40 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

Synchronization

p Message passing may be either blocking or non-blocking.
p Blocking is considered synchronous

n 송신하는프로세스는메세지가수신프로세스또는메일박스에의해
수신될때까지 blocking 됨

p Non-blocking is considered asynchronous
n 송신하는프로세스가메세지를보내고작업을재시작함

p send and receive primitives may be either blocking or non-blocking.

2.41 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

Buffering

p Queue of messages attached to the link; implemented in one of
three ways.
1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous).
2. Bounded capacity – finite length of n messages

Sender must wait if link full.
3. Unbounded capacity – infinite length

Sender never waits.

2.42 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

IPC의예 : POSIX 공유메모리
#include <sys/shm.h>
#include <sys/stat.h>
#include <stdio.h>
int main()
{
/* the identifier for the shared memory segment */
int segment_id;
/* a pointer to the shared memory segment */
char* shared_memory;
/* the size (in bytes) of the shared memory segment */
const int size = 4096;

/* allocate a shared memory segment */
segment_id = shmget(IPC_PRIVATE, size, S_IRUSR | S_IWUSR);
/* attach the shared memory segment */
shared_memory = (char *) shmat(segment_id, NULL, 0);
/* write a message to the shared memory segment */
sprintf(shared_memory, "Hi there!");
/* now print out the string from shared memory */
printf("*%s\n", shared_memory);
/* now detach the shared memory segment */
shmdt(shared_memory);
/* now remove the shared memory segment */
shmctl(segment_id, IPC_RMID, NULL);
return 0;

}

C program illustrating POSIX shared-memory API.

2.43 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

IPC의예 : Client-Server Communication

p Sockets
p Remote Procedure Calls
p Remote Method Invocation (Java)

2.44 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

IPC의예 : Sockets

p A socket is defined as an endpoint for communication.
p Concatenation of IP address and port
p The socket 161.25.19.8:1625 refers to port 1625 on host

161.25.19.8
p well known ports

n telnet server : port 23
n ftp server : port 21
n web(http) server : port 80

p Communication consists between a pair of sockets.

Java가 제공하는세가지소켓
1) Connection-oriented(TCP) Socket : Socket Class
2) Connectionless(UDP) Socket : DatagramSocket Class
3) MulticastSocket

2.45 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

IPC의예 : Socket Communication

2.46 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

IPC의예 :
import java.net.*;
import java.io.*;
public class DateServer
{

public static void main(String[] args) {
try {

ServerSocket sock = new ServerSocket(6013);
// now listen for connections
while (true) {

Socket client = sock.accept();
PrintWriter pout = new
PrintWriter(client.getOutputStream(), true);
// write the Date to the socket
pout.println(new java.util.Date().toString());
// close the socket and resume
// listening for connections
client.close();

}
}
catch (IOException ioe) {

System.err.println(ioe);
}

}
}
Figure 3.18 Date server.

2.47 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

IPC의예 :
import java.net.*;
import java.io.*;
public class DateClient
{
public static void main(String[] args) {
try {

//make connection to server socket. 127.0.0.1 is loopback IP addr
Socket sock = new Socket("127.0.0.1", 6013);
InputStream in = sock.getInputStream();
BufferedReader bin = new

BufferedReader(new InputStreamReader(in));
// read the data from the socket
String line;
while ((line = bin.readLine()) != null)

System.out.println(line);
// close the socket connection
sock.close();

}
catch (IOException ioe) {

System.err.println(ioe);
}

}
}
Figure 3.19 Date client.

2.48 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

IPC의예 : Remote Procedure Calls

p Remote procedure call (RPC) abstracts procedure calls between
processes on networked systems.

p Stubs – client-side proxy for the actual procedure on the server.
p The client-side stub locates the server and marshalls the parameters.
p The server-side stub receives this message, unpacks the

marshalled parameters, and peforms the procedure on the server.

2.49 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

IPC의예 : Execution of RPC

2.50 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

IPC의예 : Remote Method Invocation

p Remote Method Invocation (RMI) is a Java mechanism similar to
RPCs.

p RMI allows a Java program on one machine to invoke a method on
a remote object.

2.51 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006Operating System

IPC의예 : Marshalling Parameters

