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Abstract: Spatial data mining algorithms heavily depend on the efficient processing of neighbor-

hood relations since the neighbors of many objects have to be investigated in asingle run of atyp-

ical algorithm. Therefore, providing general concepts for neighborhood relations as well as an ef-

ficient implementation of these conceptswill allow atight integration of spatial data mining algo-

rithms with a spatial database management system. Thiswill speed up both, the development and

the execution of spatial data mining algorithms. In this paper, we define neighborhood graphs and

paths and a small set of database primitives for their manipulation. We show that typical spatia
datamining algorithmsarewell supported by the proposed basic operations. For finding significant

spatial patterns, only certain classes of paths “leading away” from a starting object are relevant.
We discuss filters allowing only such neighborhood paths which will significantly reduce the
search space for spatial data mining algorithms. Furthermore, we introduce neighborhood indices
to speed up the processing of our database primitives. We implemented the database primitives on
top of a commercial spatial database management system. The effectiveness and efficiency of the
proposed approach was evaluated by using an analytical cost model and an extensive experimental
study on a geographic database.

1 Introduction

The computerization of many business and government transactions and the advances in scien-
tific data collection tools provide us with a huge and continuously increasing amount of data. This
explosive growth of databases has far outpaced the human ability to interpret this data, creating an
urgent need for new techniques and tools that support the human in transforming the data into use-
ful information and knowledgénowledge discovery in databases (KDD) has been defined as the
non-trivial process of discovering valid, novel, and potentially useful, and ultimately understand-
able patterns from data [FPS 96]. The process of KDD is interactive and iterative, involving several

steps such as the following ones:

» Sdection: selecting a subset of all attributes and a subset of all data from which the knowledge

should be discovered.



» Data reduction: using dimensionality reduction or transformation techniques to reduce the ef-
fective number of attributes to be considered.

» Data mining: the application of appropriate algorithms that, under acceptable computational ef-
ficiency limitations, produce a particular enumeration of patterns over the data.

» Evaluation: interpreting and evaluating the discovered patterns with respect to their usefulness

in the given application.

Soatial Database Systems (SDBS) (see [Gue 94] for an overview) are database systems for the
management of spatial data. To find implicit regularities, rules or patterns hidden in large spatial
databases, e.g. for geo-marketing, traffic control or environmental studies, spatial data mining al-

gorithms are very important (see [KHA 96] for an overview of spatial data mining).

Most existing data mining algorithms run on separate and specially prepared files, but integrat-
ing them with adatabase management system (DBMS) has the following advantages. Redundant
storage and potential inconsistencies can be avoided. Furthermore, commercial database systems
offer various index structures to support different types of database queries. This functionality can
be used without extra implementation effort to speed-up the execution of data mining algorithms
(which, in general, have to perform many database queries). Similar to the relational standard lan-
guage SQL, the use of standard primitives will speed-up the development of new data mining al-

gorithms and will also make them more portable.

In this paper, we introduce a set of database primitives for mining in spatial databases. [AIS 93]
follows a similar approach for mining in relational databases. Our database primitives are based on
the concept of neighborhood relations since attributes of the neighbors of some object of interest
may have an influence on the object itself. The proposed primitives are sufficient to express most
of the algorithms for spatial data mining from the literature. We present techniques for efficiently

supporting these primitives by a DBMS.

The rest of the paper is organized as follows. Section 2 introduces our database primitives for
spatial data mining. In section 3, we review spatial data mining algorithms and demonstrate how
they can be expressed by using the proposed primitives. Section 4 presents methods of efficiently
supporting our database primitives by existing DBMSs. Section 5 summarizes the contributions

and discusses several issues for future research.



2 Database Primitivesfor Spatial Data Mining

In this section, we introduce a small set of database primitives for spatial data mining (see
[EKS 97] for afirst sketch). The major difference between mining in relational databases and mi-
ning in spatial databasesis that attributes of the neighbors of some object of interest may have an
influence on the object itself. Therefore, our database primitives are based on the concept of spatial
neighborhood relations.

2.1 Neighborhood Relations

The mutual influence between two objects depends on factors such as the topology, the distance
or the direction between the objects. For instance, a new industrial plant may pollute its neighbor-
hood depending on the distance and on the major direction of thewind. Figure 1 depicts amap used
in the assessment of a possible location for a new industrial plant. The map shows three regions
with different degrees of pollution (indicated by the different colors) caused by the planned plant.

Furthermore, the influenced objects such as communities and forests are depicted..

Figure 1. Regionsof pollution around a planned industrial plant [BF 91]

In this section, we introduce three basic types of spatial relations: topological, distance and di-
rection relations which are binary relations, i.e. relations between pairs of objects. Spatial objects
may be either points or spatially extended objects such aslines, polygons or polyhedrons. Spatially
extended objects may be represented by a set of points at its surface, e.g. by the edges of apolygon
(vector representation) or by the points contained in the object, e.g. the pixelsof an object inaraster

image (raster representation). Therefore, we use sets of points as ageneric representation of spatial



objects. Ingeneral, thepointsp = (pq, Py, - - -, Pg) are elements of ad-dimensional Euclidean vector
space called Points. In the following, however, we restrict the presentation to the 2-dimensional
case, athough, al of the introduced notions can easily be applied to higher dimensions d. Spatial
objects O are represented by a set of points, i.e. O 0 27°™S For apoint p= (p,, Py), P and p, denote
the coordinates of p in the first and the second dimension. Ax(O) := max{|oy- p| | 0, p O O} is
called the x-extension of O and Ay(O) := max{|oy - py| |0, p 1l O} the y-extension of O.

Topological relations are those relations which are invariant under topological transformations,
i.e. they are preserved if both objects are rotated, translated or scaled simultaneously. The formal

definitions are based on the boundaries, interiors and complements of the two related objects.

Definition 1: (topological relations) The topological relations between two objects A and B are
derived from the nine intersections of the interiors, the boundaries and the complements of A and
B with each other. The relations are: A digjoint B, A meets B, A overlaps B, A equals B, A covers
B, A covered-by B, A contains B, Ainside B. A formal definintion can be found in [Ege 91].

Distance relations are those relations comparing the distance of two objects with a given con-
stant using one of the arithmetic operators. The distance dist between two objects, i.e. sets of

points, can then simply be defined by the minimum distance between their points.

Definition 2: (distance relations) Let dist be a distance function, let o be one of the arithmetic
predicates<, > or =, let c beareal number and let O, and O, be spatial objects, i.e. Oy, 0, (279",
Then a distance relation A distance, . B holdsiiff dist(O4, O,) o c.

In the following, we define 2-dimensional direction relations and we will use their geographic
names. For dimensionsd > 2, the number of different direction relations increases but the underly-
ing concepts are still the same.

To define direction relations O, R O, we distinguish between the source object O, and the des-
tination object O, of the direction relation R. There are several possibilities to define direction re-
lations depending on the number of points they consider in the source and the destination object.
We define the direction relation of two spatially extended objects using one representative point

rep(O4) of the source object O, and all points of the destination object O,. The representative point



of asource object may, e.g., be the center of the object. This representative point is used as the or-

igin of avirtual coordinate system and its quadrants define the directions.
Definition 3: (direction relations) Let rep(A) be a representative point in the source object A.
- B northeast A holds, iff L1 b (B: by, = rep(A), [ by = rep(A),

southeast, southwest and northwest are defined analogoudly.
- Bnorth A holds, iff U1 b B: by = rep(A),

south, west, east are defined analogoudly.
- B any_direction Aisdefined to be TRUE for al A, B.

Figure 2 illustrates some of the topological, distance and direction relations using 2D polygons.
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|
g O OO A —
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A d|§ance_0 B A dlstance_c A dlstance<c B C south A

Figure2. lllustration of the direction relations

Obvioudy, for each pair of spatial objects at least one of the direction relations holds but the
direction relation between two objects may not be unique. Only the special relations northwest,
northeast, southwest and southeast are mutually exclusive (if we exclude objects with holes, ob-
jectswith a co-dimension greater than 0, and separations). However, if considering only these spe-
cial directionsthere may be pairs of objectsfor which none of these direction relations hold, e.g. if
some points of B are northeast of A and some points of B are northwest of A. On the other hand, all
the direction relations are partially ordered by a specialization relation (simply given by set inclu-
sion) such that the smallest direction relation for two objects A and B is uniquely determined. We

call this smallest direction relation for two objects A and B the exact direction relation of A and B.

Topological, distance and direction relations may be combined by the logical operators [ (and)

aswell as [J(or) to express a complex neighborhood relation.

Definition 4: (complex neighborhood relations) If r, and r, are neighborhood relations, then

ry Orpoandrq Or, are also neighborhood relations - called complex neighborhood relations.



2.2 Neighborhood Graphsand Their Operations

Based on the neighborhood relations, we introduce the concepts of neighborhood graphs and

neighborhood paths and some basic operations for their manipulation.

Definition 5: (neighborhood graphs and paths) Let neighbor be a neighborhood relation and
DB [ 2P9NS he 3 database of objects.

a) A neighborhood graph Gpg por = (N, E) isagraph with the set of nodes N which weidentify

with the objects o J DB and the set of edges E [0 N x N where two nodes n; and n, OO N are
connected via some edge of E iff neighbor(nq,n,) holds. Let n denote the cardinality of N and
let e denote the cardinality of E. Then, f:= e/ n denotes the average number of edges of a node,
i.e. fis called the “fan out” of the graph.

b) A neighborhood path is a sequence of nodes [n,, . . ., 0], whereneighbor(n;, n; ;) holds for
all n, 0N, 1<i<k . The numbek of nodes is called tHength of the neighborhood path.

c) A neighborhood patimf, ny, ..., nisvalidiff i<k, j<k i#]j < n # nj :

Lemma 1. The expected number of neighborhood paths of lekgthrting from a given node is

fk-1and the expected number of all neighborhood paths of léngtthenn* f k-1,

In the following, we will only createalid neighborhood paths, i.e. paths containing no cycles.
Obviously, even the number of valid neighborhood paths may become very large. For the purpose
of KDD, however, we are mostly interested in a certain class of paths, i.e. paths which are “leading
away” from the starting object in a straightforward sense. We conjecture that a spatial KDD algo-
rithm using a set of paths which are crossing the space in an arbitrary way, leading forward and
backwards and contain cycles will not produce useful patterns (if any will be produced at all).
Therefore, in addition to our general restriction to valid paths, the operations on neighborhood

paths will provide parameters (filters) to further reduce the number of paths actually created.

We will present the signature of the most important operations and a short description of their
meaning using the following domainébj ects, NRel ati ons (neighborhood relations
Predi cates, I nteger, NG aphs (neighborhood graphs NPat hs ( neighborhood paths
2jects  oNPaths e do not define an explicit domain of databases. Instead, we use the domain

2j €Cts of gl subsets of the set of all objects.



We assume the standard operationsfrom relational algebra such as selection, union, intersection
and difference to be available for sets of objects and for sets of paths. For instance, the operation
sel ecti on(db, pred) returnsthe set of al elements of a database db satisfying the predicate
pr ed. We introduce the following basic operations for neighborhood graphs and paths:

nei ghbors: NGraphs x Objects x Predicates --> 2 Objects

extensions: NG aphs x 2NPahs | eger x Predicates -> 2 NPaths

pat hs: zobj&ts o> 2NP81h51

Obj ects: szathS o> ZObjeCtS

The operation nei ghbor s(gr aph, obj ect, pred) returnsthe set of all objects connected to
obj ect viasomeedge of gr aph satisfying the conditions expressed by the predicate pr ed. The ad-
ditional selection condition pr ed isused if wewant to restrict the investigation explicitly to certain
types of neighbors. The definition of the predicate pr ed may use spatia aswell as non-spatial at-

tributes of the objects.

The operation ext ensi ons( gr aph, pat hs, max, pred) returnsthe set of al paths extending
one of the elements of pat hs by at most max nodesof gr aph. All the extended paths must satisfy
the predicate pr ed. Because the number of neighborhood paths may become very large, the oper-
ation ext ensi ons is the most critical operation with respect to efficiency of data mining algo-
rithms. Therefore, the predicate pr ed in the operation ext ensi ons acts as afilter to restrict the
number of paths created using domain knowledge about the relevant paths. Note that the elements
of pat hs are not contained in the result implying that an empty result indicates that none of the

elements of pat hs could be extended.

The operation pat hs( set Of Obj ect s) createsthe set of all paths of length 1 formed by asin-
gle element of set OF Obj ect s. The operation obj ect s(set Of Pat hs) returnsthe set of all ob-

jects associated with at least one of the nodes of one element of set Of Pat hs.

2.3 Filter Predicatesfor Neighborhood Paths

Neighborhood graphs will in general contain many paths which are irrelevant if not “mislead-
ing” for spatial data mining algorithms. For finding significant spatial patterns, we have to consider
only certain classes of paths which are “leadivgy” from the starting object in some straightfor-

ward sense. Such spatial patterns are most often the effect of some kind of influence of an object



on other objects in its neighborhood. Furthermore, this influence typically decreases or increases
continuoudly with increasing or decreasing distance. The task of spatial trend analysis, i.e. finding
patterns of systematic change of some non-spatial attributes in the neighborhood of certain data-
base objects, can be considered as atypical example. Detecting such trends would be impossible
if we do not restrict the pattern space in a way that paths changing direction in arbitrary ways or
containing cycles are eliminated.

In the following, we discuss two possible filter predicates, starlike and variable-starlike. Other
filters may be useful depending on the application.
Definition 6: (filter starlike and filter variable starlike) Let p = [nq,n,,...,n,] be a neighborhood
path and |et rel; be the exact direction for n; and ny, 1, i.€. N, 1 rel; Ny holds. The predicates starlike
and variable-starlike for paths p are defined as follows:

starlike(p) : = (Oj <k Oi>j:myqrelin < rel; Orely), if k>1; TRUE, if k=1

variable-garlike(p) : = (Oj <k Oi>j:njzqrein < re; Orely), if k>1; TRUE, if k=1.

variable
& Sarlike

garlike

Figure 3. Illustration of two different filter predicates

Thefilter starlike requiresthat, when extending apath p, the exact “final” directiomel; of p can-
not be generalized. For instance, a path with “final” directmtheast can only be extended by a

node of an edge with exact directiaortheast but not by an edge with exact directizorth.

The variable-starlike filter is less restrictive than tretarlike filter. It requires only that, when
extending a patp with a nodeny, 1, the edges = (ny, N+ 1) has to fulfill at least the exact “initial”
directionrel, of p. Note thatel; U rel; holdsif a filter (starlike or variable-starlike) is used for each
extension starting from length 1. For instance, a neighborhood path with “intial” direattbrcan
be extended by a nodat, ; if e satisfies the directionorth or one of the more special directions
northeast or northwest. Figure 3 illustrates the neighborhood paths for the fittiarsike andvari-

able-starlike when extending the paths from a given starting object.

The exact direction relatiarl for a source objed and a destination objeBtis not indepen-

dent from their sizes. B is smaller thai\ thenrel is likely to be a special relation,Bfis larger



than Athenrel typically isageneral directionrelation. In the following, we analyze this dependen-
cy considering the specia but important case of A and B having the same size. Let A be a source
object and B be a destination object satisfying A intersect B and B south A. Then, there are three
groups of such objects B as depicted in figure 4.

. 25% ) ]
_________ WAL rep(A) <> area of rep(B) for objectsin the southwest
: 50 % o
B <«—>» area of rep(B) for abjectsin the south
e e il Sl R
B, |B2r |Bs *r(B) 25 %

<«» area of rep(B) for objects in the southeast
Figure 4. Objects B with “ B south of A and B intersectsA”

All objects of the middle group B, fulfill the exact direction relation B, south A. For the objects
of the two outer groups, B, and Bs, the exact direction relation is one of the special relations, i.e.
B, southwest A and B3 southeast A. Assuming a uniform distribution of the representative points
of the B objects and assuming that B intersects A holds, the exact direction relation of the B objects
isdistributed asfollows: 25% southwest, 25% southeast, 50% south. Generalizing this observation,
we find that each of the four generalized (specialized) directionsis the exact direction relation for
1/6 [ (1/12 [¥) out of the f neighbors of some source object. Figure 5 illustrates the distribution
of the exact direction relations of the B objects.

objects B satisfying

B intersects A

> |0

1

6

Ble| o | Q-

Ble| o | Q-

Figureb5. Distribution of the exact direction relations

Under the above assumptions, we can calculate the number of all starlike neighborhood paths
of acertain length | for agiven fanout f of the neighborhood graph. The following lemmagives the
order of the number of these pathsfor f =6 and f = 12.

Lemma 2: Let A be aspatial object and let | be an integer. Let intersects be chosen as the neigh-
borhood relation. If the representative points of all spatial objects are uniformly distributed and if
they have the same Ax and Ay, then the number of all starlike neighborhood paths with source A

having alength of at most | is 0(2') for f= 12 and O(l) for f = 6.
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Lemma 2 alows usto estimate the number of neighborhood paths created when using the filter
starlike. The assumptions of thislemma may seem to be too restrictive for real applications. Note,
however, that intersects is avery natural neighborhood relation for spatially extended objects. To
evaluate the assumptions of uniform distribution of the representative points of the spatial objects
and of the same size of these objects, we conducted a set of experiments to compare the expected

numbers of neighborhood paths with the actual number of paths created on areal database.

A geographic database on Bavariawas used for this experimental evaluation. The database con-
tainsthe ATKI1S 500 data[Atk 96] and the Bavarian part of the statistical data obtained by the Ger-
man census of 1987. Also included are spatial objects representing natural object like mountains
or riversand infrastructure such as highways or railroads. Thetotal number of spatial objectsin the
databaseis n = 6,924 and the database sizeis 57.4 MB.

The average number f of edges of anode playsacrucial roleinlemma2. Thislemma calcul ates
the number of starlike neighborhood paths for values of f = 6 and f = 12. Therefore, we created a
different neighborhood graph for each of these f values from the same geographic database by us-
ing the neighborhood relations distance < ; and distance < ,,. The distances a and b were set such
that the resulting f value was 6 and 12 respectively, that is the total number of edgesewase=6*
nand e =12 * n respectively. In our test database, we found f= 6 for the neighborhood relation
intersect implying that the above distance a was close to 0. We selected typical communities from
the geographic database as source objects according to the following criteria. The communities
should be located sufficiently far enough from the Bavarian border so that neighborhood pathswith
alength of at least 5 can be created. There should be a balanced mix of small and large communities

(intermsof their area) sincethe number of actual neighborsof acommunity iscorrelated toitsarea.

We created all neighborhood paths aswell as the starlike neighborhood paths with a maximum
length of up to 5 for each of the selected sources. Table 1 reportsthe resultsfor f = 6 and for f = 12.
The table shows the results depending on the parameter maximum length. The largest value of
maximum |length was only 5 due to the very large number of all neighborhood paths and the cor-
responding large runtime for creating them. Note that the numbers presented in the columns “all
paths* and “starlike paths* do only count the number of paths having a length of exactly the spec-

ified max-length, i.e. they do not count the shorter paths. The columns “factor of increase” give the
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quotient of the number of paths in the current row and the number of pathsin the previous row (i.e.

for the previous value of max-length).

fanout f =6 fanout f = 12

factor of . factor of factor of . factor of

max- . starlike | . . starlike | .
lenath al paths | increase aths increase || all paths | increase aihs increase
9 @l paths) | P (starlike) (all paths) | P (starlike)
1 4 - 4 - 4 - 4 -
2 42 10.5 42 10.5 77 19.3 77 19.3
3 275 6.6 68 1.6 991 12.9 214 2.8
4 1,689 6.1 53 0.8 12,469 12.6 331 1.6
5 9,342 55 35 0.7 || 149,760 12.0 347 1.1

Table 1. Numbersof neighborhood paths

We find that for f = 6 the number of all neighborhood paths (starting from the same source) with
alength of at most max-length is O(6™1€"9M and the number of the starlike neighborhood paths
only grows approximately linear with increasing max-length - as stated by lemma 2. For f = 12 the
number of all neighborhood paths with alength of at most max-length is O(12™1egt) a5 we can
expect from the lemma. However, the number of the starlike neighborhood paths is significantly
less than the stated value O(2™1e9t) Thjs deviation from lemma 2 can be explained asfollows.
The lemma assumes the same size of the spatial objects. However, small destination objects are
more likely to fulfil the filter starlike than large destination objectsimplying that the size of objects
on starlike neighborhood pathstendsto decrease. Thus, the factor of increase decreases significant-
ly because in general small objects have less neighbors than large objects. Note that lemma 2 nev-
ertheless yields an upper bound for the number of starlike neighborhood paths created.

The factors of increase, listed in table 1, provide some interesting insights. The factors of in-
crease are approximately as stated by lemma 2. However, we observe that these factors are excep-
tionally large for max-length = 2, i.e. when comparing the paths for max-length =1 and max-
length = 2. The reason is that the filter starlike does not yield any restrictions for the extension of
pathswith length 1 since these paths do not yet have a characteristic direction. Therefore, the factor

of increase for max-length = 2 isthe same for all paths as for the starlike paths.
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3 Algorithmsfor Spatial Data Mining

To support our claim that the expressivity of our spatial data mining primitivesis adequate, we
demonstrate how typical spatial data mining algorithms can be integrated with aspatial DBMS by

using the database primitves introduced in section 2.

3.1 Spatial Clustering

Clustering is the task of grouping the objects of a database into meaningful subclasses (that is,
clusters) so that the members of acluster are as similar as possible whereas the members of differ-
ent clusters differ as much as possible from each other. Applications of clustering in spatial data-
bases are, e.g., the detection of seismic faults by grouping the entries of an earthquake catalog or

the creation of thematic maps in geographic information systems by clustering feature spaces.

Different typesof spatial clustering algorithms have been proposed, e.g. k-medoid clustering al-
gorithms such as CLARANS [NH 94]. Thisis an example of a global custering algorithm (where
a change of a single database object may influence al clusters) which cannot make use of our da-
tabase primitives in a natural way. On the other hand, the basic idea of a single scan algorithmis
to group neighboring objects of the database into clusters based on alocal cluster condition per-
forming only one scan through the database. Single scan clustering algorithms are efficient if the
retrieval of the neighborhood of an object can be efficiently performed by the SDBS. Note that |o-
cal cluster conditions are well supported by our database primitives, in particular by the nei ghbor s
operation on an appropriate neighborhood graph. The algorithmic schema of single scan clustering

is depicted in figure 6.

Different cluster conditions yield different notions of a cluster and different clustering algo-
rithms. For example, GDBSCAN (Generalized Density Based Spatial Clustering of Applications
with Noise) [SEKX 98] relies on a density-based notion of clusters. The key idea of a density-
based cluster isthat for each point of acluster its Eps-neighborhood for some given Eps> 0 hasto
contain at least a minimum number of points, i.e. the “density” iEkpisaneighborhood of points
has to exceed some threshold. This idea of “density-based clusters” can be generalized in two im-
portant ways. First, any notion of a neighborhood can be used instea&us-aeighborhood if
the definition of the neighborhood is based on a binary predicate which is symmetric and reflexive.

Second, instead of simply counting the objects in a neighborhood of an object other measures to
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SingleScanClustering(Database db; NRelation rel)
setGraphtocr eat e NG aph(db, rel) ;
initialize a seCurrentObjects as empty;
for each nodeO in gdo
if Ois not yet member of some clustien
create a new cluster;
insertO into CurrentObjects;
while CurrentObjects not emptydo
remove the first element @furrentObjects asO;
setNeighborstonei ghbor s( Graph, O, TRUE) ;
if Neighbors satisfy the cluster conditiaio
addO to clustelC;
addNeighborsto CurrentObjects;
end SingleScanClustering;

Figure 6. Schema of single scan clustering algorithms
define the “cardinality” of that neighborhood can be used as well. Whereas a distance-based neigh-

borhood is a natural notion of a neighborhood for point objects, it may be more appropriate to use
topological relations such asersects or meets to cluster spatially extended objects such as a set
of polygons of largely differing sizes. See [SEKX 98] for a detailed discussion of suitable neigh-

borhood relations for different applications.

3.2 Spatial Characterization
The task otharacterization is to find a compact description for a selected subset of the data-
base. In this section, we discuss the task of characterization in the context of spatial databases and

review two relevant methods.

Extending the general concept of association rules, [KH 95] introdpatal association rules
which describe associations between objects based on spatial neighborhood relations. For instance,
a user may want to discover the spatial associations of towns in British Columbia with roads, wa-
ters, mines or boundaries having some specified support and confidence. Then, the following spa-

tial association rule may be discovered:

0 X ODB OY O DB: is-a(X,town) - close-to(X,Y)Ois-a(Y,water) (80%)
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Thisrulestatesthat 80% of the sel ected towns are close to watey, i.e. therul e characterizestowns

in British Columbia as generally being close to some lake, river etc.

The algorithm presented in [KH 95] to find spatial association rules consists of 5 steps. Step 2
(coarse spatial computation) and step 4 (refined spatial computation) involve spatial aspects of the
objects and are briefly examined in the following. Step 2 computes spatial joins of the object type
to be characterized (such astown) with each of the other specified object types (such aswater, road,
boundary or mine) using a neighborhood relation (such as close-to). For each of the candidates ob-
tained from step 2 (and which passed an additional filter-step 3), the exact spatial relation, for ex-
ample overlap, is determined in step 4. Finally, a relation such as the one depicted in figure 7
resultswhich isthe input for the final step of rule generation. It is easy to see that the spatial steps
2 and 4 of thisalgorithm can be well supported by thenei ghbor s operation on a suitable neigh-

borhood graph.
Town Water Road Boundary
Saanich <meet, J.FucaStrait> <overlap,highway1>, <close-to,US>
<close-to,highway17>
PrinceGeorge <overlap, highway97>
Petincton <meet,OkanaganL ake> <overlap, highway97> <close-to, US>

Figure7. Input for the step of rulegeneration [KH 95]

[EFK S 98] introduces the following definition of spatial characterization with respect to adata-
base and a set of target objects which is a subset of the given database. A spatial characterization
is adescription of the spatial and non-spatial properties which are typical for the target objects but
not for the whole database. The relative frequencies of the non-spatia attribute values and the rel-
ative frequencies of the different object types are used as the interesting properties. For instance,
different object typesin a geographic database are communities, mountains, lakes, highways, rail-
roads etc. To obtain aspatial characterization, not only the properties of the target objects, but also
the properties of their neighbors (up to a given maximum number of edges in the relevant neigh-

borhood graph) are considered.
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A gpatial characterization rule of the form target U p; (n4, freg-facy) O ... O py (ny, freg- facy)
means that for the set of all targets extended by n; neighbors, the property p; is freg-fac; times more
(or less) frequent than in the database. The characterization algorithm usually starts with a small
set of target objects, selected for instance by a condition on some non-spatial attribute(s) such as
“rate of retired people = HIGH” (see figure 8, left). Then, the algorithms expands regions around
the target objects, simultaneously selecting those attributes of the regions for which the distribution

of values differs significantly from the distribution in the whole database (figure 8, right).

target objects maximally expanded regions

Figure 8. Characterizing wrt. high rate of retired people [EFK S 98]

In the last step of the algorithm, the following characterization rule is generated describing the
target regions. Note that this rule lists not only some non-spatial attributes but also the neighbor-
hood of mountains (after three extensions) as significant for the characterization of the target re-
gions:

community has high rate of retired people O
apartments per building = very low (0, 9.1) O
rate of foreigners = very low (0, 8.9)0O
rate of academics = nedium (0, 6.3) O
average size of enterprises = very low (0, 5.8) O
object type = nountain (3, 4.1)

Obviously, this algorithm is well suited for support by the proposed database primitives.

3.3 Spatial Classification
The task ofclassification is to assign an object to a class from a given set of classes based on
the attribute values of this object. dpatial classification the attribute values of neighboring ob-

jects are also considered.



-16-

The agorithm presented in [KHS 98] works as follows: The relevant attributes are extracted by
comparing the attribute values of the target objects with the attribute values of their nearest neigh-
bors. The determination of relevant attributesis based on the concepts of the nearest hit (the nearest
neighbor belonging to the same class) and the nearest miss (the nearest neighbor belonging to a
different class). In the construction of the decision tree, the neighbors of target objects are not con-
sidered individually. Instead, so-called buffers are created around the target objects and the non-
spatial attribute values are aggregated over all objects contained in the buffer. For instance, in the
case of shopping malls abuffer may represent the area where its customers live or work. The size
of the buffer yielding the maximum information gain is chosen and thissize is applied to compute
the aggregatesfor all relevant attributes. Figure 9 depicts an example of aspatial decisiontreeclas-

sifying stores as having a high or low profit.

L
=)
|D_: high-profit(no)
L:|>J avg-income(large
T
close-to(water) Ll
a high-profit(yes)
I <
7)) LL
E high-profit(no)

Figure9. Spatial decision tree [KHS 98]

Whereas the nearest neighbor cannot be directly expressed by our neighborhood relations, it
would be possible to extend our set of neighborhood relation accordingly. The proposed database

primitives are, however, sufficient to express the creation of buffers for spatia classification.

3.4 Spatial Trend Detection

A spatial trend has been defined as aregular change of one or more non-spatial attributes when
moving away from a given start object o [EFK S 98]. Neighborhood paths starting from o are used
to model the movement and a regression analysis is performed on the respective attribute values
for the objects of a neighborhood path to describe the regularity of change. For the regression, the
distance from o is the independent variable and the difference of the attribute values are the depen-
dent variable(s) for the regression. The correlation of the observed attribute values with the values

predicted by the regression function yields a measure of confidence for the discovered trend.
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Global aswell as local trends are possible. The existence of a global trend for a start object o
indicates that if considering all objects on all paths starting from o the values for the specified at-
tribute(s) in general tend to increase (decrease) with increasing distance. Figure 10 (left) depicts
the result of algorithm global-trend for the attribute “average rent” and the city of Regensburg as a
start object. Algorithnhocal-trendsdetects single paths starting from an obgeihd having a cer-
tain trend. The paths starting frammay show different pattern of change, e.g., some trends may
be positive while the others may be negative. Figure 10 (right) illustrates this case for the attribute

“average rent” and the city of Regensburg as a start object.

Global trend Local trends

== direction of decreasing attribute values

Figure 10. Spatial trends of the"average rent” starting from the city of Regensburg

The algorithms for spatial trend detection are naturally supported Ipatharandextensions

operation.

4 Efficient DBM S Support Based on Neighbor hood I ndices

Typically, spatial index structures, e.g. R-trees [Gut 84], are used in an SDBMS to speed up the
processing of queries such as region queries or nearest neighbor queries [Gue 94]. Note that our
default implementation of theei ghbor s operations uses an R-tree. If the spatial objects are fairly
complex, however, retrieving the neighbors of some object this way is still very time consuming
due to the complexity of the evaluation of neighborhood relations on such objects. Furthermore,
when creating all neighborhood paths with a given source object, a very large nunsieyof
bor s operations has to be performed. Finally, many SDBS are rather static since there are not many
updates on objects such as geographic maps or proteins. Therefore, materializing the relevant
neighborhood graphs and avoiding to access the spatial objects themselves may be worthwhile.

This is the idea of the neighborhood indices.
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4.1 Neighborhood Indices

In this section, we review related work on join indices and then we introduce our concept of
neighborhood indices. The idea of a (relational) join index [Val 87] is to maintain a precomputed
structure containing all pairs of tuples from the two input relations satisfying some join predicate.
[Val 87] shows how such indices can be used by a query optimizer to speed-up the processing of
join operations. Thejoin index isimplemented asabinary relation. [Rot 91] introduced the concept
of spatial joinindices asamaterialization of aspatial join with the goal of speeding up spatial que-
ry processing. Given two sets of vertices V; and V, and a set of edges E, an abstract join index is
defined as the bipartite graph (V4, V5, E). [Rot 91] describes an algorithm to generate aspatial join
index from agrid file. In this case, the elements of the V; represent the page regions, that is the sets
of cells of the directory mapped to the same data page. E contains an edge for each pair of vertices
from V; and V, where the corresponding page regions have an g-overlap for some € specified by
the database administrator. Furthermore, an algorithm is presented for updating the join index on
updates of the underlying grid files. [Rot 91] does not discuss the physical design of spatial join

indices.

[LH 92] refines the concept of spatial join indices. The elements of the V; represent objectsin-
stead of page regions. A distance associated join index consists of tuples of the form
(object,,0bject,,distance(object,,0bject,)) for each pair of database objects. Thisjoin index can be
used to support not only queries concerning a single neighborhood relation but it is applicable to a
large number of queries. Since a distance associated join index requires O(nz) space for a database
of n objects, a hierarchical version is also proposed. These indices assume a spatial concept hier-
archy of objects. A hierarchical distance associated join index has one entry only for pairs of ob-
jects contained in the same object of the next higher level of the hierarchy. For instance, only pairs
of citiesin the same state or pairs of housesin the same city are represented by an index entry. This
approach significantly reduces the space requirements but also prevents its application for spatial
datamining if aspatial concept hierarchy is either not available or not relevant for the task of min-
ing. For example, in a geographic information system there may be a spatial concept hierarchy of
districts > communities > etc. but the influence of communities to their neighborhood is not re-
stricted to communities of the same district. Consequently, we cannot rely on such hierarchies -

representing a political viewpoint - for the purposee of supporting spatial data mining.
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Our concept of neighborhood indices is related to that of the distance associated join indices

with the following new contributions:

» A specified maximum distance restricts the pairs of objects represented in a neighborhood index.
» For each of the different types of neighborhood relations (that is distance, direction, and topo-

logical relations), the concrete relation of the pair of objects is stored.

In the following, we introduce neighborhood indices more formally.
Definition 7: neighborhood index

Let DB be a set of spatial objects andrteix anddist be real numbers. L& be a direction relati-
on andT be a topological relation. Then theighborhood index for DB with maximum distance
max, denoted byl ne, , is defined as follows:

lmac ={(07,0,,dist,D,T) | O, O, 1 DB, O, distance. g4 O, O dist < max 1O, D O, 0O, TO,}.

A simple implementation of a neighborhood index using-dre on the key attribu®bject-

ID is illustrated in figure 11.

Object-ID | Neighbor Distance Direction Topology
B*- 01 05 2.7 southwest disjoint
tree
01 03 0 northwest overlap

Figure 11. Sample Neighbor hood Index

A neighborhood index supports not only one but a set of neighborhood graphs. We call a neigh-
borhood indexapplicable for a given neighborhood graph if the index contains an entry for each
of the edges of the graph. To find the neighborhood indices applicable for some neighborhood
graph, we introduce the notion of the critical distance of a neighborhood reldtiantively, the
critical distance of a neighborhood relatiaris the maximum possible distance for a pair of objects

O, andO, satisfyingO; r O,. The following definitions introduce these notions formally.
Definition 8: applicable neighborhood index

Let G'rDB be a neighborhood graph and lef,  be a neighborhood ingg&x. applisable
for G?B iff 0(O, 0 DB, 0,0 DB)O,rO, 0 (O, O, dist, D, T) O 122
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Definition 9: critical distance of a neighborhood relation

Let r be aneighborhood relation and let 0 denote the set of the real numbers. Let 279N deno-
tethe set of al spatia objects. The critical distance of r, denoted as c-distance(r), isdefined as

follows:

. in(D) if Disnon-empty

c-distance(r) = il
! &) U o otherwise

with the set D defined as: _
D = {d00|0(0,, O, 027™)(0,r0, JO,distance. 440, 0 dist < d)}

The following lemma allows to calculate the critical distance for any neighborhood relation.

The critical distanceis calculated recursively along the composition of a neighborhood relation.
Lemma 3: The following equation holds for the critical distance of a neighborhood relation r:

0 if r isatopological relation except digoint

c if ristherelation distance. . or distance-.

oo If r isadirection relation, the relation distance,,
min(c—distance(r,), c-distance(r,)) ifr=r,0Or, Ordigoint
O max(c—distance(r,), c—distance(r,)) ifr=r,0Or,

c-distance(r) =

o o o

A neighborhood index with a maximum distance of max is applicable for aneighborhood graph

withrelationr if the critical distance of r is not larger than max. Thisis the contents of lemma 4.
Lemmad4: Let G'rDB be a neighborhood graph and let 122 be aneighborhood index.

If max = c-distance(r), then 1s isapplicable for G'rDB.

Obviously, if two neighborhood indices I ;> and 1> with ¢; < ¢, are available and applicable,
using 15> ismoreefficient because in general it haslessentriesthan I, . The smallest applicable
neighborhood index for some neighborhood graph is the applicable neighborhood index with the
smallest critical distance.

In figure 12, we sketch the algorithm for processing the nei ghbor s operation which makes
use of the smallest applicable neighborhood index. If there is no applicable neighborhood index,

then the standard approach of using some spatial index structure is followed.
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neighbor s (graph G?B , object o, predicate pred)
select as | the smallest applicable neighborhood index for G_°; // Index Selection
if such | existsthen /I Filter Sep
use the neighborhood index | to retrieve as candidates the set of objectsc
having an entry (o,c,dist, D, T) in|
else use the spatia index for DB to retrieve as candidates
the set of objects c satisfyingor c;
initialize an empty set of neighbors; /I Refinement Sep
for each cin candidates do
if or cand pred(c) then
add c to neighbors
return neighbors,

Figure 12. Algorithm neighbors
Thefirst step of algorithm neighbors, the index selection, selects a neighborhood index. Thefil-
ter step returns a set of candidate objects (which may satisfy the specified neighborhood relation)
with a cardinality significantly smaller than the database size. In the last step, the refinement step,
for al these candidates the neighborhood relation aswell asthe additional predicate pred are eval-
uated and all objects passing thistest are returned as the resulting neighbors.

Toimplement theext ensi ons operation, we perform adepth-first search. Thus, apath buffer
of size O(max-length) is sufficient to store the intermediate results. On the other hand, a breadth-
first search would require a much larger buffer size since it begins creating all paths before finish-
ing the first one. To retrieve the nodes for potential extensions of a candidate path, the nei gh-
bor s operations is used indicating that the efficiency of this operation is crucial. Figure 13

presents the algorithm for the ext ensi ons operation in pseudo-code notation.

To create aneighborhood index 15, , aspatial join on DB with respect to the neighborhood re-
lation (O.distance. ;,O, [Idist<max) is performed. A spatia join can be efficiently pro-
cessed by using a spatial index structure, see e.g. [BKSS 94]. For each pair of objects returned by
the spatial join, we then have to determine the exact distance, the direction relation and the topo-
logical relation. The resulting tuples of the form (O,, O,, Distance, Direction, Topology) are
stored in arelation which is indexed by a B-tree on the attribute O;.
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extensions(graph g, list of paths p, integer max-length, filter f)
initialize an empty list extensions,
initialize the list of path-candidatesto thelist p;
while path-candidates is not empty do
remove the first element of path-candidates as cand;
if length of cand < max-length then
set 0 to last node of cand;
call nei ghbor s(g,0,TRUE) obtaining the set neighborhood;
for each element neighbor of neighborhood do
create an extension ext of cand by adding neighbor as the last node;
if extisvalid and ext satisfiesthe filter f then
add ext to extensions,
add ext at the head of the list path-candidates;
return path-candidates;

Figure 13. Algorithm extensions

Updates of a database, i.e. insertions or deletions of spatial objects, require updates of the de-
rived neighborhood indices. Fortunately, the update of aneighborhood index | s, isrestricted to
the neighborhood of the respective object defined by the neighborhood relation A distance. 5« B.
This neighborhood can be efficiently retrieved by using either a neighborhood index (in case of a
deletion) or by using a spatial index structure (in case of an insertion). As an example, we discuss
insertions of anew spatial object o to a database of spatial objects d. The retrieval of the relevant
neighbors of o is not supported by any neighborhood index since o is a new object. However, the
gpatial index structure assumed to be available for d supportsthis retrieval. Note that there may be
several neighborhood indices derived from the same database d and that all relevant ones have to
be updated to include an entry for each of the neighbors of o. Figure 14 presents the algorithm in-
sert-object in pseudo-code notation. In each of the relevant neighborhood indices, two entries have
to be inserted for each pair (o,neighbor). Recall that the direction relations and the topological re-
lations are not symmetric so that the relation r hasto be determined for o r neighbor as well as for

neighbor r o.
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inser t-obj ect(database d, object 0)
set maximum to the maximum distance of the largest neighborhood index
1% aximum  derived from d;
retrieve as neighborhood all objects n from d satisfying dist(n, 0) < maximum
by using the spatial index structure associated with d;
for each element neighbor of neighborhood do
calculate distance as dist(neighbor,0);
calculate direction as the direction relation of neighbor and o;
calculate rever se-direction as the direction relation of o and neighbor;
calculate topology as the topological relation of neighbor and o;
calculate rever se-topol ogy as the topological relation of o and neighbor;
for each neighborhood index 1%..x derived fromd do
if distance<max then
insert the entry (neighbor, o,distance,direction, topology) into |%may ;
insert the entry (o, neighbor, distance,reverse-direction,
reverse-topology) into | %may ;

Figure 14. Algorithm insert-object
4.2 Cost Model

A cost model is developed to predict the cost of performing anei ghbor s operation with and
without a neighborhood index. For database algorithms, usually the number of page accesses is
chosen asthe cost measure. However, the amount of CPU time required for evaluating a neighbor-
hood relation on spatially extended objects such as polygons may become very large so that we
model both, the 1/0 time and the CPU time for an operation. We use t,aqe, i-€. the execution time
of apage access, and t; 4, i-€. the execution time of afloating point comparison, as the unitsfor 1/

O time and CPU time, respectively.

In table 2, we define the parameters of the cost model and list typical values for each of them.
The system overhead s includes client-server communication and the overhead induced by several
SQL queries for retrieving the relevant neighborhood index and the minimum bounding box of a
polygon (necessary for the access of the R-tree). pingex and Pyata denote the probability that are-

guested index page and data page, respectively, haveto be read from disk according to the buffering
Strategy.
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name meaning typical values
n number of nodes in the neighborhood graph [10%..107]
f average number of edges per node in the graph [1.. 102]
v average number of vertices of a spatial object [1.. 103]
ff ratio of fanout of the index and fanout (f) of the graph [1..10]
Cindex | Capacity of apageintermsof index entries 128
Cy capacity of apage interms of vertices 64
Pindex | Probability that a given index page must be read from disk [0..1]
Pgata | Probability that a given data page must be read from disk [0..1]
thage | @verageexecution time for a page access 1* 107 sec
thoat | €xecution time for afloating point comparison 3* 10° sec
s system overhead Sgpﬁr;ds onthe

Table 2;: Parameters of the cost model

Table 3 showsthe cost for the three steps of processing anei ghbor s operation with and with-
out a neighborhood index. In the R-tree, there is one entry for each of the n nodes of the neighbor-
hood graph whereas the B+-tree stores one entry for each of the f * n edges. We assume that the
number of R-tree paths to be followed is proportional to the number of neighboring objects, i.e.
proportional to f. A gpatia object with v vertices requires vic, data pages. We assume a distance
relation as neighborhood rel ation requiring v2 floating point comparisons. When using a neighbor-
hood index, the filter step returns ff * f candidates. The refinement step has to access their index
entries but does not have to access the vertices of the candidates since the refinement test can be
directly performed by using the attributes Distance, Direction and Topology of the index entries.
This test involves a constant, i.e. independent of v, number of floating point comparisons and re-

quires no page accesses such that its cost can be neglected.

4.3 Experimental Results

Weimplemented the database primitives on top of the commercial DBM S llustra[lll 97] using
its 2D spatial data blade which provides R-trees. A geographic database of Bavaria was used for

an experimental performance evaluation and validation of the cost model. This database represents
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Step Cost without neighborhood index Cost with neighbor hood index
Index Selection S s
Filter Step f E{Iogcmwn—‘ Pindex Fpage _IOQCmdex(f Eh)—‘ (Pindex page
Refinement Step | (1+f) v/ ¢, | MPaata Cpege + f V7 o ff Of CPuata (tpage

Table 3: Cost model for the nei ghbor s operation

the Bavarian communities with one spatial attribute (polygon) and 52 non-spatial attributes (such
as average rent or rate of unemployment). All experiments were run on HP9000/715 (50MHZz)
workstations under HP-UX 10.10.

The first set of experiments compared the performance predicted by our cost models with the
experimental performance when varying the parameters n, f and v. The results show that our cost
model isable to predict the performance reasonably well. For instance, figure 15 depictsthe results

for n= 2,000, v = 35 and varying values for f.

Comparison with index Comparison without index

290 725
——model ——model ’
—= - experiments —= - experiments

costin ms
costin ms

Figure 15. Comparison of cost model ver sus experimental results

We used our cost model to compare the performance of the nei ghbor s operation with and
without neighborhood index for combinations of parameter values which we could not eval uate ex-
perimentally with our database. Figure 16 depicts the results (1) for f = 10, v = 100 and varying n
and (2) for n=100,000, f = 10 and varying v. These results demonstrate a significant speed-up for
thenei ghbor s operation with compared to without neighborhood index. In particular, the neigh-
borhood index is very efficient for complex spatial objects, i.e. for large values of v which istypi-

cal, e.g., for geographic information systems.

The next set of experiments analyzed the system overhead which is rather large for a single

nei ghbor s operation. This overhead, however, can be reduced when calling multiple correlated
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Figure 16. Comparison with and without neighbor hood index
neighbors operations issued by one ext ensi ons operation, since the client-server communica-
tion, theretrieval of the relevant neighborhood index etc. is necessary only once for thewholeex-
t ensi ons operation and not for each of the nei ghbor s operations. In our experiments, we
found that the system overhead was typically reduced by 50%, e.g. from 211 to 100 ms.

To conclude, when using neighborhood indices we obtain a significant speed-up for the
nei ghbor s operation. This operation is most crucial to the efficient DBMS support of the data-
base primitives since the implementation of the operations for extending neighborhood paths is
based on the nei ghbor s operation. The speed-up grows strongly with increasing number of ver-
tices of the spatial objects. There is alarge system overhead induced by the DBMS which is sig-
nificantly reduced when considering sets of nei ghbor s operations issued from the same

ext ensi ons operation.

5 Conclusions

In this paper, we defined neighborhood graphs and paths and a small set of database primitives
for gpatial data mining. We discussed filters restricting the search to such neighborhood paths
“leading away” from a starting object. An analytical as well as an experimental analysis demon-
strated that in typical applications the exponential number of all neighborhood paths can be re-
duced to a linear number of relevant neighborhood paths. We showed that spatial data mining
algorithms such as spatial clustering, characterization, classification and trend detection are well

supported by the proposed operations.

Finally, we introduced neighborhood indices to speed-up the processing of our database primi-

tives. Neighborhood indices can be easily created in a commercial DBMS by using standard func-
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tionality, i.e. relational tables and index structures. We implemented the database primitives on top
of the object-relational DBMS Illustra. The efficiency of the neighborhood indices was evaluated
by using an analytical cost model and an extensive experimental study on a geographic database.
The implementation using neighborhood indices yielded a significant speed-up compared to the
standard implementation using a spatial index structure such as the R-tree. The speed-up grows

strongly with increasing complexity of the spatial objects.

Future research includes the following issues. So far, the neighborhood relations between two
objects depend only on the properties of the two involved objects. In the future, we will extend our
approach to neighborhood relations such as “being amorgnéarest neighbors” which depend
on more than the two related objects. The investigation of other filters for neighborhood paths with
respect to their effectiveness and efficiency in different applications is a further interesting issue.
Finally, there are several issues of optimizing the implementation of the database primitives. The
system overhead induced by the DBMS is significantly influenced by the “tightness” of the inte-
gration of the primitives with the DBMS. A lot of communication overhead could be avoided by
implementing the database primitives in the core of the DBMS server and not as a client process.
The internal system overhead can be further reduced when using a DBMS such as the Informix
Universal Server that allows preparing sets of SQL queries (issued by sieighbors opera-
tions) such that an execution plan is generated only once. In fact, we are currently porting our im-

plementation from lllustra to the Informix Universal Server.
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