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Abstract: Spatial data mining algorithms heavily depend on the efficient processing of neighbor-
hood relations since the neighbors of many objects have to be investigated in a single run of a typ-
ical algorithm. Therefore, providing general concepts for neighborhood relations as well as an ef-
ficient implementation of these concepts will allow a tight integration of spatial data mining algo-
rithms with a spatial database management system. This will speed up both, the development and
the execution of spatial data mining algorithms. In this paper, we define neighborhood graphs and
paths and a small set of database primitives for their manipulation. We show that typical spatial
data mining algorithms are well supported by the proposed basic operations. For finding significant
spatial patterns, only certain classes of paths “leading away” from a starting object are re
We discuss filters allowing only such neighborhood paths which will significantly reduce
search space for spatial data mining algorithms. Furthermore, we introduce neighborhood 
to speed up the processing of our database primitives. We implemented the database prim
top of a commercial spatial database management system. The effectiveness and efficienc
proposed approach was evaluated by using an analytical cost model and an extensive expe
study on a geographic database. 

1 Introduction

The computerization of many business and government transactions and the advances i

tific data collection tools provide us with a huge and continuously increasing amount of data

explosive growth of databases has far outpaced the human ability to interpret this data, crea

urgent need for new techniques and tools that support the human in transforming the data i

ful information and knowledge. Knowledge discovery in databases (KDD) has been defined as th

non-trivial process of discovering valid, novel, and potentially useful, and ultimately unders

able patterns from data [FPS 96]. The process of KDD is interactive and iterative, involving s

steps such as the following ones:

• Selection: selecting a subset of all attributes and a subset of all data from which the know

should be discovered.
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• Data reduction: using dimensionality reduction or transformation techniques to reduce th

fective number of attributes to be considered.

• Data mining: the application of appropriate algorithms that, under acceptable computation

ficiency limitations, produce a particular enumeration of patterns over the data.

• Evaluation: interpreting and evaluating the discovered patterns with respect to their usefu

in the given application.

Spatial Database Systems (SDBS) (see [Gue 94] for an overview) are database systems fo

management of spatial data. To find implicit regularities, rules or patterns hidden in large s

databases, e.g. for geo-marketing, traffic control or environmental studies, spatial data min

gorithms are very important (see [KHA 96] for an overview of spatial data mining). 

Most existing data mining algorithms run on separate and specially prepared files, but in

ing them with a database management system (DBMS) has the following advantages. Redunda

storage and potential inconsistencies can be avoided. Furthermore, commercial database

offer various index structures to support different types of database queries. This functional

be used without extra implementation effort to speed-up the execution of data mining algo

(which, in general, have to perform many database queries). Similar to the relational standa

guage SQL, the use of standard primitives will speed-up the development of new data min

gorithms and will also make them more portable. 

In this paper, we introduce a set of database primitives for mining in spatial databases. [A

follows a similar approach for mining in relational databases. Our database primitives are ba

the concept of neighborhood relations since attributes of the neighbors of some object of i

may have an influence on the object itself. The proposed primitives are sufficient to expres

of the algorithms for spatial data mining from the literature. We present techniques for effic

supporting these primitives by a DBMS. 

The rest of the paper is organized as follows. Section 2 introduces our database primiti

spatial data mining. In section 3, we review spatial data mining algorithms and demonstra

they can be expressed by using the proposed primitives. Section 4 presents methods of ef

supporting our database primitives by existing DBMSs. Section 5 summarizes the contrib

and discusses several issues for future research. 
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2 Database Primitives for Spatial Data Mining

In this section, we introduce a small set of database primitives for spatial data mining (see

[EKS 97] for a first sketch). The major difference between mining in relational databases and mi-

ning in spatial databases is that attributes of the neighbors of some object of interest may have an

influence on the object itself. Therefore, our database primitives are based on the concept of spatial

neighborhood relations.

2.1 Neighborhood Relations

The mutual influence between two objects depends on factors such as the topology, the distance

or the direction between the objects. For instance, a new industrial plant may pollute its neighbor-

hood depending on the distance and on the major direction of the wind. Figure 1 depicts a map used

in the assessment of a possible location for a new industrial plant. The map shows three regions

with different degrees of pollution (indicated by the different colors) caused by the planned plant.

Furthermore, the influenced objects such as communities and forests are depicted..

In this section, we introduce three basic types of spatial relations: topological, distance and di-

rection relations which are binary relations, i.e. relations between pairs of objects. Spatial objects

may be either points or spatially extended objects such as lines, polygons or polyhedrons. Spatially

extended objects may be represented by a set of points at its surface, e.g. by the edges of a polygon

(vector representation) or by the points contained in the object, e.g. the pixels of an object in a raster

image (raster representation). Therefore, we use sets of points as a generic representation of spatial

Figure 1. Regions of pollution around a planned industrial plant [BF 91]
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objects. In general, the points p = (p1, p2, . . ., pd) are elements of a d-dimensional Euclidean vector

space called Points. In the following, however, we restrict the presentation to the 2-dimensional

case, although, all of the introduced notions can easily be applied to higher dimensions d. Spatial

objects O are represented by a set of points, i.e. O ∈ 2Points. For a point p = (px, py), px and py denote

the coordinates of p in the first and the second dimension. ∆x(O) := max{|ox - px| | o, p ∈ O} is

called the x-extension of O and ∆y(O) := max{|oy - py| | o, p ∈ O} the y-extension of O.

Topological relations are those relations which are invariant under topological transformations,

i.e. they are preserved if both objects are rotated, translated or scaled simultaneously. The formal

definitions are based on the boundaries, interiors and complements of the two related objects.

Definition 1: (topological relations) The topological relations between two objects A and B are

derived from the nine intersections of the interiors, the boundaries and the complements of A and

B with each other. The relations are: A disjoint B, A meets B, A overlaps B, A equals B, A covers

B, A covered-by B, A contains B, A inside B. A formal definintion can be found in [Ege 91].

Distance relations are those relations comparing the distance of two objects with a given con-

stant using one of the arithmetic operators. The distance dist between two objects, i.e. sets of

points, can then simply be defined by the minimum distance between their points. 

Definition 2: (distance relations) Let dist be a distance function, let σ be one of the arithmetic

predicates <, > or = , let c be a real number and let O1  and O2 be spatial objects, i.e. O1, O2 ∈ 2
Points.

Then a distance relation A distanceσ c B holds iff dist(O1, O2) σ c.

In the following, we define 2-dimensional direction relations and we will use their geographic

names. For dimensions d > 2, the number of different direction relations increases but the underly-

ing concepts are still the same. 

To define direction relations O2 R O1, we distinguish between the source object O1 and the des-

tination object O2 of the direction relation R. There are several possibilities to define direction re-

lations depending on the number of points they consider in the source and the destination object.

We define the direction relation of two spatially extended objects using one representative point

rep(O1) of the source object O1 and all points of the destination object O2. The representative point
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of a source object may, e.g., be the center of the object. This representative point is used as the or-

igin of a virtual coordinate system and its quadrants define the directions. 

Definition 3: (direction relations) Let rep(A) be a representative point in the source object A.

- B northeast A holds, iff ∀ b ∈ B: bx ≥ rep(A)x ∧ by ≥ rep(A)y 

southeast, southwest and northwest are defined analogously.

- B north A holds, iff ∀ b ∈ B: by ≥ rep(A)y 

south, west, east are defined analogously. 

- B any_direction A is defined to be TRUE for all A, B.

Figure 2 illustrates some of the topological, distance and direction relations using 2D polygons. 

Obviously, for each pair of spatial objects at least one of the direction relations holds but the

direction relation between two objects may not be unique. Only the special relations northwest,

northeast, southwest and southeast are mutually exclusive (if we exclude objects with holes, ob-

jects with a co-dimension greater than 0, and separations). However, if considering only these spe-

cial directions there may be pairs of objects for which none of these direction relations hold, e.g. if

some points of B are northeast of A and some points of B are northwest of A. On the other hand, all

the direction relations are partially ordered by a specialization relation (simply given by set inclu-

sion) such that the smallest direction relation for two objects A and B is uniquely determined. We

call this smallest direction relation for two objects A and B the exact direction relation of A and B. 

Topological, distance and direction relations may be combined by the logical operators ∧ (and)

as well as ∨ (or) to express a complex neighborhood relation. 

Definition 4: (complex neighborhood relations) If r1 and r2 are neighborhood relations, then

r1 ∧ r2 and r1 ∨ r2 are also neighborhood relations - called complex neighborhood relations.

C southeast A

rep(A)

Figure 2. Illustration of the direction relations

A
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D north A

C south A

B east A,
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A disjoint B A overlap B
A contains B

B inside A

A distance=0 B A distance=c B A distance<c B
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2.2 Neighborhood Graphs and Their Operations

Based on the neighborhood relations, we introduce the concepts of neighborhood graphs and

neighborhood paths and some basic operations for their manipulation.

Definition 5: (neighborhood graphs and paths) Let neighbor be a neighborhood relation and

DB ⊆ 2Points be a database of objects.

a) A neighborhood graph  is a graph with the set of nodes N which we identify

with the objects  and the set of edges  where two nodes n1 and n2 ∈ N are

connected via some edge of E iff neighbor(n1,n2) holds. Let n denote the cardinality of N and

let e denote the cardinality of E. Then, f:= e / n denotes the average number of edges of a node,

i.e. f is called the “fan out” of the graph.

b) A neighborhood path is a sequence of nodes [n1, n2, . . ., nk], where neighbor(ni, ni+1) holds for

all . The number k of nodes is called the length of the neighborhood path.

c) A neighborhood path [n1, n2, . . ., nk] is valid iff ∀ i ≤ k, j < k: .

Lemma 1: The expected number of neighborhood paths of length k starting from a given node is

f k -1 and the expected number of all neighborhood paths of length k is then n*f k -1.

In the following, we will only create valid neighborhood paths, i.e. paths containing no cycl

Obviously, even the number of valid neighborhood paths may become very large. For the p

of KDD, however, we are mostly interested in a certain class of paths, i.e. paths which are “l

away” from the starting object in a straightforward sense. We conjecture that a spatial KDD

rithm using a set of paths which are crossing the space in an arbitrary way, leading forwa

backwards and contain cycles will not produce useful patterns (if any will be produced a

Therefore, in addition to our general restriction to valid paths, the operations on neighbo

paths will provide parameters (filters) to further reduce the number of paths actually create

We will present the signature of the most important operations and a short description o

meaning using the following domains: Objects, NRelations (neighborhood relations),

Predicates, Integer, NGraphs (neighborhood graphs), NPaths (neighborhood paths),

2Objects, 2NPaths. We do not define an explicit domain of databases. Instead, we use the d

2Objects of all subsets of the set of all objects. 

GDB
neighbor N E,( )=

o DB∈ E N N×⊆

ni N 1 i k<≤,∈

i j≠ ni nj≠⇔
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We assume the standard operations from relational algebra such as selection, union, intersection

and difference to be available for sets of objects and for sets of paths. For instance, the operation

selection(db,pred) returns the set of all elements of a database db satisfying the predicate

pred. We introduce the following basic operations for neighborhood graphs and paths:

neighbors: NGraphs x Objects x Predicates --> 2Objects

extensions: NGraphs x 2NPaths x Integer x Predicates -> 2NPaths

paths: 2Objects --> 2NPaths;

objects: 2NPaths --> 2Objects

The operation neighbors(graph,object,pred) returns the set of all objects connected to

object via some edge of graph satisfying the conditions expressed by the predicate pred. The ad-

ditional selection condition pred is used if we want to restrict the investigation explicitly to certain

types of neighbors. The definition of the predicate pred may use spatial as well as non-spatial at-

tributes of the objects.

The operation extensions(graph,paths,max,pred) returns the set of all paths extending

one of the elements of paths by at most max nodes of graph. All the extended paths must satisfy

the predicate pred. Because the number of neighborhood paths may become very large, the oper-

ation extensions is the most critical operation with respect to efficiency of data mining algo-

rithms. Therefore, the predicate pred in the operation extensions acts as a filter to restrict the

number of paths created using domain knowledge about the relevant paths. Note that the elements

of paths are not contained in the result implying that an empty result indicates that none of the

elements of paths could be extended. 

The operation paths(setOfObjects) creates the set of all paths of length 1 formed by a sin-

gle element of setOfObjects. The operation objects(setOfPaths) returns the set of all ob-

jects associated with at least one of the nodes of one element of setOfPaths. 

2.3 Filter Predicates for Neighborhood Paths

Neighborhood graphs will in general contain many paths which are irrelevant if not “mis

ing” for spatial data mining algorithms. For finding significant spatial patterns, we have to con

only certain classes of paths which are “leading away” from the starting object in some straightfor

ward sense. Such spatial patterns are most often the effect of some kind of influence of an
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on other objects in its neighborhood. Furthermore, this influence typically decreases or increases

continuously with increasing or decreasing distance. The task of spatial trend analysis, i.e. finding

patterns of systematic change of some non-spatial attributes in the neighborhood of certain data-

base objects, can be considered as a typical example. Detecting such trends would be impossible

if we do not restrict the pattern space in a way that paths changing direction in arbitrary ways or

containing cycles are eliminated.

In the following, we discuss two possible filter predicates, starlike and variable-starlike. Other

filters may be useful depending on the application. 

Definition 6: (filter starlike and filter variable starlike) Let p = [n1,n2,...,nk] be a neighborhood

path and let reli be the exact direction for ni and ni+1, i.e. ni+1 reli ni holds. The predicates starlike

and variable-starlike for paths p are defined as follows: 

starlike(p) :⇔ (∃ j < k: ∀ i > j: ni+1 reli ni ⇔ reli ⊆ relj), if k > 1; TRUE, if k=1

variable-starlike(p) :⇔ (∃ j < k: ∀ i > j: ni+1 reli ni ⇔ reli ⊆ rel1), if k > 1; TRUE, if k=1. 

The filter starlike requires that, when extending a path p, the exact “final” direction relj of p can-

not be generalized. For instance, a path with “final” direction northeast can only be extended by a

node of an edge with exact direction northeast but not by an edge with exact direction north.

The variable-starlike filter is less restrictive than the starlike filter. It requires only that, when

extending a path p with a node nk+1, the edge e = (nk, nk+1) has to fulfill at least the exact “initial”

direction rel1 of p. Note that relj ⊆ rel1 holds if a filter (starlike or variable-starlike) is used for each

extension starting from length 1. For instance, a neighborhood path with “intial” direction north can

be extended by a node nk+1 if e satisfies the direction north or one of the more special direction

northeast or northwest. Figure 3 illustrates the neighborhood paths for the filters starlike and vari-

able-starlike when extending the paths from a given starting object. 

The exact direction relation rel for a source object A and a destination object B is not indepen-

dent from their sizes. If B is smaller than A then rel is likely to be a special relation, if B is larger

Figure 3. Illustration of two different filter predicates

starlike variable 
starlike
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than A then rel typically is a general direction relation. In the following, we analyze this dependen-

cy considering the special but important case of A and B having the same size. Let A be a source

object and B be a destination object satisfying A intersect B and B south A. Then, there are three

groups of such objects B as depicted in figure 4. 

All objects of the middle group B2 fulfill the exact direction relation B2 south A. For the objects

of the two outer groups, B1 and B3, the exact direction relation is one of the special relations, i.e.

B1 southwest A and B3 southeast A. Assuming a uniform distribution of the representative points

of the B objects and assuming that B intersects A holds, the exact direction relation of the B objects

is distributed as follows: 25% southwest, 25% southeast, 50% south. Generalizing this observation,

we find that each of the four generalized (specialized) directions is the exact direction relation for

 ( ) out of the f neighbors of some source object. Figure 5 illustrates the distribution

of the exact direction relations of the B objects.

Under the above assumptions, we can calculate the number of all starlike neighborhood paths

of a certain length l for a given fanout f of the neighborhood graph. The following lemma gives the

order of the number of these paths for f = 6 and f = 12.

Lemma 2: Let A be a spatial object and let l be an integer. Let intersects be chosen as the neigh-

borhood relation. If the representative points of all spatial objects are uniformly distributed and if

they have the same ∆x and ∆y, then the number of all starlike neighborhood paths with source A

having a length of at most l is O(2l) for f = 12 and O(l) for f = 6. 

Figure 4. Objects B with “ B south of A and B intersects A”

A

rep(B) 

rep(A)

B1 B2 B3

area of rep(B) for objects in the southwest

area of rep(B) for objects in the south

area of rep(B) for objects in the southeast

25 %

50 %

25 %

1 6⁄ f⋅ 1 12⁄ f⋅

Figure 5. Distribution of the exact direction relations
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Lemma 2 allows us to estimate the number of neighborhood paths created when using the filter

starlike. The assumptions of this lemma may seem to be too restrictive for real applications. Note,

however, that intersects is a very natural neighborhood relation for spatially extended objects. To

evaluate the assumptions of uniform distribution of the representative points of the spatial objects

and of the same size of these objects, we conducted a set of experiments to compare the expected

numbers of neighborhood paths with the actual number of paths created on a real database. 

A geographic database on Bavaria was used for this experimental evaluation. The database con-

tains the ATKIS 500 data [Atk 96] and the Bavarian part of the statistical data obtained by the Ger-

man census of 1987. Also included are spatial objects representing natural object like mountains

or rivers and infrastructure such as highways or railroads. The total number of spatial objects in the

database is n = 6,924 and the database size is 57.4 MB.

The average number f of edges of a node plays a crucial role in lemma 2. This lemma calculates

the number of starlike neighborhood paths for values of f = 6 and f = 12. Therefore, we created a

different neighborhood graph for each of these f values from the same geographic database by us-

ing the neighborhood relations distance ≤ a and distance ≤ b. The distances a and b were set such

that the resulting f value was 6 and 12 respectively, that is the total number of edges e was e = 6 *

n and e = 12 * n respectively. In our test database, we found  for the neighborhood relation

intersect implying that the above distance a was close to 0. We selected typical communities from

the geographic database as source objects according to the following criteria. The communities

should be located sufficiently far enough from the Bavarian border so that neighborhood paths with

a length of at least 5 can be created. There should be a balanced mix of small and large communities

(in terms of their area) since the number of actual neighbors of a community is correlated to its area. 

We created all neighborhood paths as well as the starlike neighborhood paths with a maximum

length of up to 5 for each of the selected sources. Table 1 reports the results for f = 6 and for f = 12.

The table shows the results depending on the parameter maximum length. The largest value of

maximum length was only 5 due to the very large number of all neighborhood paths and the cor-

responding large runtime for creating them. Note that the numbers presented in the colum

paths“ and “starlike paths“ do only count the number of paths having a length of exactly the

ified max-length, i.e. they do not count the shorter paths. The columns “factor of increase” giv

f 6≈
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quotient of the number of paths in the current row and the number of paths in the previous row (i.e.

for the previous value of max-length).

We find that for f = 6 the number of all neighborhood paths (starting from the same source) with

a length of at most max-length is O(6max-length) and the number of the starlike neighborhood paths

only grows approximately linear with increasing max-length - as stated by lemma 2. For f = 12 the

number of all neighborhood paths with a length of at most max-length is O(12max-length) as we can

expect from the lemma. However, the number of the starlike neighborhood paths is significantly

less than the stated value O(2max-length). This deviation from lemma 2 can be explained as follows.

The lemma assumes the same size of the spatial objects. However, small destination objects are

more likely to fulfil the filter starlike than large destination objects implying that the size of objects

on starlike neighborhood paths tends to decrease. Thus, the factor of increase decreases significant-

ly because in general small objects have less neighbors than large objects. Note that lemma 2 nev-

ertheless yields an upper bound for the number of starlike neighborhood paths created.

The factors of increase, listed in table 1, provide some interesting insights. The factors of in-

crease are approximately as stated by lemma 2. However, we observe that these factors are excep-

tionally large for max-length = 2, i.e. when comparing the paths for max-length = 1 and max-

length = 2. The reason is that the filter starlike does not yield any restrictions for the extension of

paths with length 1 since these paths do not yet have a characteristic direction. Therefore, the factor

of increase for max-length = 2 is the same for all paths as for the starlike paths.

fanout f = 6 fanout f = 12

max-
length

all paths
factor of 
increase

(all paths)

starlike 
paths

factor of 
increase
(starlike)

all paths
factor of 
increase

(all paths)

starlike 
paths

factor of 
increase
(starlike)

1 4 - 4 - 4 - 4 -

2 42 10.5 42 10.5 77 19.3 77 19.3

3 275 6.6 68 1.6 991 12.9 214 2.8

4 1,689 6.1 53 0.8 12,469 12.6 331 1.6

5 9,342 5.5 35 0.7 149,760 12.0 347 1.1

Table 1: Numbers of neighborhood paths
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3 Algorithms for Spatial Data Mining

To support our claim that the expressivity of our spatial data mining primitives is adequate, we

demonstrate how typical spatial data mining algorithms can be integrated with a spatial DBMS by

using the database primitves introduced in section 2. 

3.1 Spatial Clustering

Clustering is the task of grouping the objects of a database into meaningful subclasses (that is,

clusters) so that the members of a cluster are as similar as possible whereas the members of differ-

ent clusters differ as much as possible from each other. Applications of clustering in spatial data-

bases are, e.g., the detection of seismic faults by grouping the entries of an earthquake catalog or

the creation of thematic maps in geographic information systems by clustering feature spaces. 

Different types of spatial clustering algorithms have been proposed, e.g. k-medoid clustering al-

gorithms such as CLARANS [NH 94]. This is an example of a global custering algorithm (where

a change of a single database object may influence all clusters) which cannot make use of our da-

tabase primitives in a natural way. On the other hand, the basic idea of a single scan algorithm is

to group neighboring objects of the database into clusters based on a local cluster condition per-

forming only one scan through the database. Single scan clustering algorithms are efficient if the

retrieval of the neighborhood of an object can be efficiently performed by the SDBS. Note that lo-

cal cluster conditions are well supported by our database primitives, in particular by the neighbors

operation on an appropriate neighborhood graph. The algorithmic schema of single scan clustering

is depicted in figure 6. 

Different cluster conditions yield different notions of a cluster and different clustering algo-

rithms. For example, GDBSCAN (Generalized Density  Based  Spatial  Clustering of  Applications

with  Noise) [SEKX 98] relies on a density-based notion of clusters. The key idea of a density-

based cluster is that for each point of a cluster its Eps-neighborhood for some given Eps > 0 has to

contain at least a minimum number of points, i.e. the “density” in the Eps-neighborhood of points

has to exceed some threshold. This idea of “density-based clusters” can be generalized in 

portant ways. First, any notion of a neighborhood can be used instead of an Eps-neighborhood if

the definition of the neighborhood is based on a binary predicate which is symmetric and ref

Second, instead of simply counting the objects in a neighborhood of an object other meas
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define the “cardinality” of that neighborhood can be used as well. Whereas a distance-base

borhood is a natural notion of a neighborhood for point objects, it may be more appropriate

topological relations such as intersects or meets to cluster spatially extended objects such as a

of polygons of largely differing sizes. See [SEKX 98] for a detailed discussion of suitable n

borhood relations for different applications.

3.2 Spatial Characterization

The task of characterization is to find a compact description for a selected subset of the d

base. In this section, we discuss the task of characterization in the context of spatial databa

review two relevant methods.

Extending the general concept of association rules, [KH 95] introduces spatial association rules

which describe associations between objects based on spatial neighborhood relations. For i

a user may want to discover the spatial associations of towns in British Columbia with road

ters, mines or boundaries having some specified support and confidence. Then, the followi

tial association rule may be discovered:

∀ X ∈ DB ∃ Y ∈ DB: is-a(X,town) → close-to(X,Y) ∧ is-a(Y,water) (80%)

SingleScanClustering(Database db; NRelation rel)

set Graph to create_NGraph(db,rel);

initialize a set CurrentObjects as empty;

for each node O in g do
if O is not yet member of some cluster then

create a new cluster C;

insert O into CurrentObjects;

while CurrentObjects not empty do
remove the first element of CurrentObjects as O;

set Neighbors to neighbors(Graph, O, TRUE);

if Neighbors satisfy the cluster condition do
add O to cluster C;

add Neighbors to CurrentObjects;

end SingleScanClustering;

Figure 6. Schema of single scan clustering algorithms
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This rule states that 80% of the selected towns are close to water, i.e. the rule characterizes towns

in British Columbia as generally being close to some lake, river etc. 

The algorithm presented in [KH 95] to find spatial association rules consists of 5 steps. Step 2

(coarse spatial computation) and step 4 (refined spatial computation) involve spatial aspects of the

objects and are briefly examined in the following. Step 2 computes spatial joins of the object type

to be characterized (such as town) with each of the other specified object types (such as water, road,

boundary or mine) using a neighborhood relation (such as close-to). For each of the candidates ob-

tained from step 2 (and which passed an additional filter-step 3), the exact spatial relation, for ex-

ample overlap, is determined in step 4. Finally, a relation such as the one depicted in figure 7

results which is the input for the final step of rule generation. It is easy to see that the spatial steps

2 and 4 of this algorithm can be well supported by the neighbors operation on a suitable neigh-

borhood graph.

[EFKS 98] introduces the following definition of spatial characterization with respect to a data-

base and a set of target objects which is a subset of the given database. A spatial characterization

is a description of the spatial and non-spatial properties which are typical for the target objects but

not for the whole database. The relative frequencies of the non-spatial attribute values and the rel-

ative frequencies of the different object types are used as the interesting properties. For instance,

different object types in a geographic database are communities, mountains, lakes, highways, rail-

roads etc. To obtain a spatial characterization, not only the properties of the target objects, but also

the properties of their neighbors (up to a given maximum number of edges in the relevant neigh-

borhood graph) are considered. 

Town Water Road Boundary

Saanich <meet, J.FucaStrait> <overlap,highway1>,
<close-to,highway17>

<close-to,US>

PrinceGeorge <overlap, highway97>

Petincton <meet,OkanaganLake> <overlap, highway97> <close-to,US>

. . . . . . . . . . . .

Figure 7. Input for the step of rule generation [KH 95]
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A spatial characterization rule of the form target ⇒ p1 (n1, freq-fac1) ∧ ... ∧ pk (nk, freq- fack)

means that for the set of all targets extended by ni neighbors, the property pi is freq-faci times more

(or less) frequent than in the database. The characterization algorithm usually starts with a small

set of target objects, selected for instance by a condition on some non-spatial attribute(s) such as

“rate of retired people = HIGH” (see figure 8, left). Then, the algorithms expands regions a

the target objects, simultaneously selecting those attributes of the regions for which the distr

of values differs significantly from the distribution in the whole database (figure 8, right). 

In the last step of the algorithm, the following characterization rule is generated describi

target regions. Note that this rule lists not only some non-spatial attributes but also the ne

hood of mountains (after three extensions) as significant for the characterization of the tar

gions:

community has high rate of retired people ⇒ 
apartments per building = very low (0, 9.1) ∧ 
rate of foreigners = very low (0, 8.9) ∧ 
rate of academics = medium (0, 6.3) ∧ 
average size of enterprises = very low (0, 5.8) ∧ 
object type = mountain (3, 4.1)

Obviously, this algorithm is well suited for support by the proposed database primitives.

3.3 Spatial Classification 

The task of classification is to assign an object to a class from a given set of classes bas

the attribute values of this object. In spatial classification the attribute values of neighboring ob

jects are also considered. 

Figure 8. Characterizing wrt. high rate of retired people [EFKS 98]

maximally expanded regionstarget objects
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The algorithm presented in [KHS 98] works as follows: The relevant attributes are extracted by

comparing the attribute values of the target objects with the attribute values of their nearest neigh-

bors. The determination of relevant attributes is based on the concepts of the nearest hit (the nearest

neighbor belonging to the same class) and the nearest miss (the nearest neighbor belonging to a

different class). In the construction of the decision tree, the neighbors of target objects are not con-

sidered individually. Instead, so-called buffers are created around the target objects and the non-

spatial attribute values are aggregated over all objects contained in the buffer. For instance, in the

case of shopping malls a buffer may represent the area where its customers live or work. The size

of the buffer yielding the maximum information gain is chosen and this size is applied to compute

the aggregates for all relevant attributes. Figure 9 depicts an example of a spatial decision tree clas-

sifying stores as having a high or low profit. 

Whereas the nearest neighbor cannot be directly expressed by our neighborhood relations, it

would be possible to extend our set of neighborhood relation accordingly. The proposed database

primitives are, however, sufficient to express the creation of buffers for spatial classification. 

3.4 Spatial Trend Detection

A spatial trend has been defined as a regular change of one or more non-spatial attributes when

moving away from a given start object o [EFKS 98]. Neighborhood paths starting from o are used

to model the movement and a regression analysis is performed on the respective attribute values

for the objects of a neighborhood path to describe the regularity of change. For the regression, the

distance from o is the independent variable and the difference of the attribute values are the depen-

dent variable(s) for the regression. The correlation of the observed attribute values with the values

predicted by the regression function yields a measure of confidence for the discovered trend. 

close-to(water) T
R

U
E

F
A

L
S

E

avg-income(large)

T
R

U
E

F
A

L
S

E
high-profit(no)

high-profit(yes)

high-profit(no)

Figure 9. Spatial decision tree [KHS 98]
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Global as well as local trends are possible. The existence of a global trend for a start object o

indicates that if considering all objects on all paths starting from o the values for the specified at-

tribute(s) in general tend to increase (decrease) with increasing distance. Figure 10 (left) depicts

the result of algorithm global-trend for the attribute “average rent” and the city of Regensbur

start object. Algorithm local-trends detects single paths starting from an object o and having a cer-

tain trend. The paths starting from o may show different pattern of change, e.g., some trends 

be positive while the others may be negative. Figure 10 (right) illustrates this case for the at

“average rent” and the city of Regensburg as a start object.

The algorithms for spatial trend detection are naturally supported by our paths and extensions

operation. 

4 Efficient DBMS Support Based on Neighborhood Indices

Typically, spatial index structures, e.g. R-trees [Gut 84], are used in an SDBMS to speed

processing of queries such as region queries or nearest neighbor queries [Gue 94]. Note 

default implementation of the neighbors operations uses an R-tree. If the spatial objects are fa

complex, however, retrieving the neighbors of some object this way is still very time consu

due to the complexity of the evaluation of neighborhood relations on such objects. Furthe

when creating all neighborhood paths with a given source object, a very large number of neigh-

bors operations has to be performed. Finally, many SDBS are rather static since there are no

updates on objects such as geographic maps or proteins. Therefore, materializing the r

neighborhood graphs and avoiding to access the spatial objects themselves may be wor

This is the idea of the neighborhood indices. 

Figure 10. Spatial trends of the“average rent” starting from the city of Regensburg 

Global trend Local trends

direction of decreasing attribute values
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4.1 Neighborhood Indices

In this section, we review related work on join indices and then we introduce our concept of

neighborhood indices. The idea of a (relational) join index [Val 87] is to maintain a precomputed

structure containing all pairs of tuples from the two input relations satisfying some join predicate.

[Val 87] shows how such indices can be used by a query optimizer to speed-up the processing of

join operations. The join index is implemented as a binary relation. [Rot 91] introduced the concept

of spatial join indices as a materialization of a spatial join with the goal of speeding up spatial que-

ry processing. Given two sets of vertices V1 and V2 and a set of edges E, an abstract join index is

defined as the bipartite graph (V1, V2, E). [Rot 91] describes an algorithm to generate a spatial join

index from a grid file. In this case, the elements of the Vi represent the page regions, that is the sets

of cells of the directory mapped to the same data page. E contains an edge for each pair of vertices

from V1 and V2 where the corresponding page regions have an ε-overlap for some ε specified by

the database administrator. Furthermore, an algorithm is presented for updating the join index on

updates of the underlying grid files. [Rot 91] does not discuss the physical design of spatial join

indices. 

[LH 92] refines the concept of spatial join indices. The elements of the Vi represent objects in-

stead of page regions. A distance associated join index consists of tuples of the form

(object1,object2,distance(object1,object2)) for each pair of database objects. This join index can be

used to support not only queries concerning a single neighborhood relation but it is applicable to a

large number of queries. Since a distance associated join index requires O(n2) space for a database

of n objects, a hierarchical version is also proposed. These indices assume a spatial concept hier-

archy of objects. A hierarchical distance associated join index has one entry only for pairs of ob-

jects contained in the same object of the next higher level of the hierarchy. For instance, only pairs

of cities in the same state or pairs of houses in the same city are represented by an index entry. This

approach significantly reduces the space requirements but also prevents its application for spatial

data mining if a spatial concept hierarchy is either not available or not relevant for the task of min-

ing. For example, in a geographic information system there may be a spatial concept hierarchy of

districts > communities > etc. but the influence of communities to their neighborhood is not re-

stricted to communities of the same district. Consequently, we cannot rely on such hierarchies -

representing a political viewpoint - for the purposee of supporting spatial data mining.
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Our concept of neighborhood indices is related to that of the distance associated join indices

with the following new contributions:

• A specified maximum distance restricts the pairs of objects represented in a neighborhood

• For each of the different types of neighborhood relations (that is distance, direction, and

logical relations), the concrete relation of the pair of objects is stored.

In the following, we introduce neighborhood indices more formally.

Definition 7: neighborhood index

Let DB be a set of spatial objects and let max and dist be real numbers. Let D be a direction relati-

on and T be a topological relation. Then the neighborhood index for DB with maximum distance

max, denoted by , is defined as follows:

 = {(O1,O2,dist,D,T) | O1, O2  ∈ DB, O1 distance=dist O2 ∧ dist ≤ max ∧ O2 D O1 ∧ O1 T O2}.

A simple implementation of a neighborhood index using a B+-tree on the key attribute Object-

ID is illustrated in figure 11.

A neighborhood index supports not only one but a set of neighborhood graphs. We call a

borhood index applicable for a given neighborhood graph if the index contains an entry for e

of the edges of the graph. To find the neighborhood indices applicable for some neighbo

graph, we introduce the notion of the critical distance of a neighborhood relation r. Intuitively, the

critical distance of a neighborhood relation r is the maximum possible distance for a pair of obje

O1 and O2 satisfying O1 r O2. The following definitions introduce these notions formally.

Definition 8: applicable neighborhood index

Let  be a neighborhood graph and let  be a neighborhood index.  is applicable

for  iff  

Imax
DB

Imax
DB

Object-ID Neighbor Distance Direction Topology

o1 o2 2.7 southwest disjoint

o1 o3 0 northwest overlap

. . . . . . . . . . . . . . .

B+-
tree

Figure 11. Sample Neighborhood Index

GDB

r Imax
DB Imax

DB

GDB

r O1 DB∈ O2 DB∈,( )O1rO2∀ O1 O2 dist D T, , , ,( ) Imax
DB∈⇒
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Definition 9: critical distance of a neighborhood relation

Let r be a neighborhood relation and let  denote the set of the real numbers. Let 2Points deno-

te the set of all spatial objects. The critical distance of r, denoted as c-distance(r), is defined as

follows:

with the set D defined as:

The following lemma allows to calculate the critical distance for any neighborhood relation.

The critical distance is calculated recursively along the composition of a neighborhood relation. 

Lemma 3: The following equation holds for the critical distance of a neighborhood relation r:

A neighborhood index with a maximum distance of max is applicable for a neighborhood graph

with relation r if the critical distance of r is not larger than max. This is the contents of lemma 4.

Lemma 4: Let  be a neighborhood graph and let  be a neighborhood index. 

If max ≥ c-distance(r), then  is applicable for .

Obviously, if two neighborhood indices and  with c1 < c2 are available and applicable,

using  is more efficient because in general it has less entries than . The smallest applicable

neighborhood index for some neighborhood graph is the applicable neighborhood index with the

smallest critical distance.

In figure 12, we sketch the algorithm for processing the neighbors operation which makes

use of the smallest applicable neighborhood index. If there is no applicable neighborhood index,

then the standard approach of using some spatial index structure is followed. 

ℜ

c-distance(r)
min D( )

∞
=

if D is non-empty
otherwise

D d ℜ∈ O1 O2 2Points∈,( )∀ O1rO2 O1dis cetan dist= O2∧ dist d≤⇒( ){ }=

c-distance(r)

0

c

∞
min c d– is ce r1( ) c d– is ce r2( )tan,tan( )
max c d– is ce r1( ) c d– is ce r2( )tan,tan( )









=

if r is a topological relation except disjoint

if r is the relation distance<c or distance=c

if r is a direction relation, the relation distance>c

if r = r1 ∧ r2 

if r = r1 ∨ r2

or disjoint

GDB

r Imax
DB

Imax
DB GDB

r

Ic1
DB Ic2

DB

Ic1
DB Ic2

DB
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The first step of algorithm neighbors, the index selection, selects a neighborhood index. The fil-

ter step returns a set of candidate objects (which may satisfy the specified neighborhood relation)

with a cardinality significantly smaller than the database size. In the last step, the refinement step,

for all these candidates the neighborhood relation as well as the additional predicate pred are eval-

uated and all objects passing this test are returned as the resulting neighbors.

To implement the extensions operation, we perform a depth-first search. Thus, a path buffer

of size O(max-length) is sufficient to store the intermediate results. On the other hand, a breadth-

first search would require a much larger buffer size since it begins creating all paths before finish-

ing the first one. To retrieve the nodes for potential extensions of a candidate path, the neigh-

bors operations is used indicating that the efficiency of this operation is crucial. Figure 13

presents the algorithm for the extensions operation in pseudo-code notation.

To create a neighborhood index , a spatial join on DB with respect to the neighborhood re-

lation  is performed. A spatial join can be efficiently pro-

cessed by using a spatial index structure, see e.g. [BKSS 94]. For each pair of objects returned by

the spatial join, we then have to determine the exact distance, the direction relation and the topo-

logical relation. The resulting tuples of the form  are

stored in a relation which is indexed by a B-tree on the attribute O1.

neighbors (graph , object o, predicate pred)

select as I the smallest applicable neighborhood index for ; // Index Selection

if such I exists then  // Filter Step

use the neighborhood index I to retrieve as candidates the set of objects c 

having an entry (o,c,dist, D, T) in I

else use the spatial index for DB to retrieve as candidates 

the set of objects c satisfying o r c;

initialize an empty set of neighbors; // Refinement Step

for each c in candidates do

if o r c and pred(c) then 

add c to neighbors

return neighbors;

GDB

r
GDB

r

Figure 12. Algorithm neighbors

Imax
DB

O1dis cetan dist= O2 dist max≤∧( )

O1 O2 Dis cetan Direction Topo ylog, , , ,( )
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Updates of a database, i.e. insertions or deletions of spatial objects, require updates of the de-

rived neighborhood indices. Fortunately, the update of a neighborhood index  is restricted to

the neighborhood of the respective object defined by the neighborhood relation A distance< max B.

This neighborhood can be efficiently retrieved by using either a neighborhood index (in case of a

deletion) or by using a spatial index structure (in case of an insertion). As an example, we discuss

insertions of a new spatial object o to a database of spatial objects d. The retrieval of the relevant

neighbors of o is not supported by any neighborhood index since o is a new object. However, the

spatial index structure assumed to be available for d supports this retrieval. Note that there may be

several neighborhood indices derived from the same database d and that all relevant ones have to

be updated to include an entry for each of the neighbors of o. Figure 14 presents the algorithm in-

sert-object in pseudo-code notation. In each of the relevant neighborhood indices, two entries have

to be inserted for each pair (o,neighbor). Recall that the direction relations and the topological re-

lations are not symmetric so that the relation r has to be determined for o r neighbor as well as for

neighbor r o.

extensions(graph g, list of paths p, integer max-length, filter f)

initialize an empty list extensions;

initialize the list of path-candidates to the list p;

while path-candidates is not empty do

remove the first element of path-candidates as cand;

if length of cand < max-length then 

set o to last node of cand;

call neighbors(g,o,TRUE) obtaining the set neighborhood;

for each element neighbor of neighborhood do

create an extension ext of cand by adding neighbor as the last node;

if ext is valid and ext satisfies the filter f then

add ext to extensions;

add ext at the head of the list path-candidates;

return path-candidates;

Figure 13.  Algorithm extensions

Imax
DB
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4.2 Cost Model

A cost model is developed to predict the cost of performing a neighbors operation with and

without a neighborhood index. For database algorithms, usually the number of page accesses is

chosen as the cost measure. However, the amount of CPU time required for evaluating a neighbor-

hood relation on spatially extended objects such as polygons may become very large so that we

model both, the I/O time and the CPU time for an operation. We use tpage, i.e. the execution time

of a page access, and tfloat, i.e. the execution time of a floating point comparison, as the units for I/

O time and CPU time, respectively. 

In table 2, we define the parameters of the cost model and list typical values for each of them.

The system overhead s includes client-server communication and the overhead induced by several

SQL queries for retrieving the relevant neighborhood index and the minimum bounding box of a

polygon (necessary for the access of the R-tree). pindex and pdata denote the probability that a re-

quested index page and data page, respectively, have to be read from disk according to the buffering

strategy.

insert-object(database d, object o)

set maximum to the maximum distance of the largest neighborhood index

 derived from d;

retrieve as neighborhood all objects n from d satisfying 

 by using the spatial index structure associated with d;

for each element neighbor of neighborhood do

calculate distance as dist(neighbor,o);

calculate direction as the direction relation of neighbor and o;

calculate reverse-direction as the direction relation of o and neighbor;

calculate topology as the topological relation of neighbor and o;

calculate reverse-topology as the topological relation of o and neighbor;

for each neighborhood index  derived from d do

if  then

insert the entry (neighbor, o,distance,direction, topology) into ;

insert the entry (o, neighbor, distance,reverse-direction,

reverse-topology) into ;

Id
maximum

dist n o,( ) maximum≤

Id
max

dis cetan max≤
Id

max

Id
max

Figure 14.  Algorithm insert-object
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Table 3 shows the cost for the three steps of processing a neighbors operation with and with-

out a neighborhood index. In the R-tree, there is one entry for each of the n nodes of the neighbor-

hood graph whereas the B+-tree stores one entry for each of the f * n edges. We assume that the

number of R-tree paths to be followed is proportional to the number of neighboring objects, i.e.

proportional to f. A spatial object with v vertices requires v/cv data pages. We assume a distance

relation as neighborhood relation requiring v2 floating point comparisons. When using a neighbor-

hood index, the filter step returns ff * f candidates. The refinement step has to access their index

entries but does not have to access the vertices of the candidates since the refinement test can be

directly performed by using the attributes Distance, Direction and Topology of the index entries.

This test involves a constant, i.e. independent of v, number of floating point comparisons and re-

quires no page accesses such that its cost can be neglected.

4.3 Experimental Results

We implemented the database primitives on top of the commercial DBMS Illustra [Ill 97] using

its 2D spatial data blade which provides R-trees. A geographic database of Bavaria was used for

an experimental performance evaluation and validation of the cost model. This database represents

name meaning typical values

n number of nodes in the neighborhood graph [103 . . 105]

f average number of edges per node in the graph [1 . . 102]

v average number of vertices of a spatial object [1 . . 103]

ff ratio of fanout of the index and fanout (f) of the graph [1 . . 10]

cindex capacity of a page in terms of index entries 128

cv capacity of a page in terms of vertices 64

pindex probability that a given index page must be read from disk [0..1]

pdata probability that a given data page must be read from disk [0..1]

tpage average execution time for a page access 1 * 10-2 sec

tfloat execution time for a floating point comparison  3 * 10-6 sec

s system overhead
 depends on the 
DBMS

Table 2: Parameters of the cost model
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the Bavarian communities with one spatial attribute (polygon) and 52 non-spatial attributes (such

as average rent or rate of unemployment). All experiments were run on HP9000/715 (50MHz)

workstations under HP-UX 10.10. 

The first set of experiments compared the performance predicted by our cost models with the

experimental performance when varying the parameters n, f and v. The results show that our cost

model is able to predict the performance reasonably well. For instance, figure 15 depicts the results

for n = 2,000, v = 35 and varying values for f. 

We used our cost model to compare the performance of the neighbors operation with and

without neighborhood index for combinations of parameter values which we could not evaluate ex-

perimentally with our database. Figure 16 depicts the results (1) for f = 10, v = 100 and varying n

and (2) for n = 100,000, f = 10 and varying v. These results demonstrate a significant speed-up for

the neighbors operation with compared to without neighborhood index. In particular, the neigh-

borhood index is very efficient for complex spatial objects, i.e. for large values of v which is typi-

cal, e.g., for geographic information systems. 

The next set of experiments analyzed the system overhead which is rather large for a single

neighbors operation. This overhead, however, can be reduced when calling multiple correlated

Step Cost without neighborhood index Cost with neighborhood index

Index Selection s s

Filter Step

Refinement Step

Table 3: Cost model for the neighbors operation

f logcindex

n pindex⋅ ⋅ tpage⋅ logcindex

f n⋅( ) pindex⋅ tpage⋅

1 f+( ) v cv⁄ pdata⋅ ⋅ tpage⋅ f v
2

tfloat⋅ ⋅+ ff f pdata⋅ ⋅ tpage⋅
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neighbors operations issued by one extensions operation, since the client-server communica-

tion, the retrieval of the relevant neighborhood index etc. is necessary only once for the whole ex-

tensions operation and not for each of the neighbors operations. In our experiments, we

found that the system overhead was typically reduced by 50%, e.g. from 211 to 100 ms.

To conclude, when using neighborhood indices we obtain a significant speed-up for the

neighbors operation. This operation is most crucial to the efficient DBMS support of the data-

base primitives since the implementation of the operations for extending neighborhood paths is

based on the neighbors operation. The speed-up grows strongly with increasing number of ver-

tices of the spatial objects. There is a large system overhead induced by the DBMS which is sig-

nificantly reduced when considering sets of neighbors operations issued from the same

extensions operation.

5 Conclusions

In this paper, we defined neighborhood graphs and paths and a small set of database primitives

for spatial data mining. We discussed filters restricting the search to such neighborhood paths

“leading away” from a starting object. An analytical as well as an experimental analysis de

strated that in typical applications the exponential number of all neighborhood paths can

duced to a linear number of relevant neighborhood paths. We showed that spatial data 

algorithms such as spatial clustering, characterization, classification and trend detection a

supported by the proposed operations. 

Finally, we introduced neighborhood indices to speed-up the processing of our database

tives. Neighborhood indices can be easily created in a commercial DBMS by using standar
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Figure 16. Comparison with and without neighborhood index
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tionality, i.e. relational tables and index structures. We implemented the database primitives on top

of the object-relational DBMS Illustra. The efficiency of the neighborhood indices was evaluated

by using an analytical cost model and an extensive experimental study on a geographic database.

The implementation using neighborhood indices yielded a significant speed-up compared to the

standard implementation using a spatial index structure such as the R-tree. The speed-up grows

strongly with increasing complexity of the spatial objects. 

Future research includes the following issues. So far, the neighborhood relations between two

objects depend only on the properties of the two involved objects. In the future, we will extend our

approach to neighborhood relations such as “being among the k-nearest neighbors” which depen

on more than the two related objects. The investigation of other filters for neighborhood path

respect to their effectiveness and efficiency in different applications is a further interesting

Finally, there are several issues of optimizing the implementation of the database primitive

system overhead induced by the DBMS is significantly influenced by the “tightness” of the

gration of the primitives with the DBMS. A lot of communication overhead could be avoide

implementing the database primitives in the core of the DBMS server and not as a client p

The internal system overhead can be further reduced when using a DBMS such as the In

Universal Server that allows preparing sets of SQL queries (issued by similar neighbors opera-

tions) such that an execution plan is generated only once. In fact, we are currently porting o

plementation from Illustra to the Informix Universal Server.
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