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ABSTRACT
Spatial co-location patterns represent the subsets of events
whose instances are frequently located together in geographic
space. We identified the computational bottleneck in the
execution time of a current co-location mining algorithm.
A large fraction of the join-based co-location miner algo-
rithm is devoted to computing joins to identify instances of
candidate co-location patterns. We propose a novel partial-
join approach for mining co-location patterns efficiently. It
transactionizes continuous spatial data while keeping track
of the spatial information not modeled by transactions. It
uses a transaction-based Apriori algorithm as a building
block and adopts the instance join method for residual in-
stances not identified in transactions. We show that the
algorithm is correct and complete in finding all co-location
rules which have prevalence and conditional probability above
the given thresholds. An experimental evaluation using syn-
thetic datasets and a real dataset shows that our algorithm
is computationally more efficient than the join-based algo-
rithm.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining, GIS and
Spatial databases

General Terms
Algorithms
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1. INTRODUCTION
A co-location represents a subset of spatial boolean events

whose instances are often located in a neighborhood. Boolean
spatial events describe the presence or absence of geographic
object types at different locations in a two dimensional or
three dimensional metric space, e.g., surface of the Earth.
Examples of boolean spatial events include business types,
mobile service request, disease, crime, climate, plant species,
etc. Spatial co-location patterns may yield important in-
sights for many applications. For example, a mobile service
provider may be interested in service patterns frequently re-
quested in a close location, e.g., ‘today sales’ and ‘nearby
stores’. The frequent neighboring request sets may be used
for providing attractive location-sensitive advertisements,
promotion, etc. Figure 1 shows the locations of different
types of business in a downtown area of Minneapolis, Min-
nesota. We can notice two prevalent co-location patterns,
i.e., {‘auto dealers’ , ‘auto repair shops’} and {‘department
stores’ , ‘gift stores’}. Other application domains for co-
locations are Earth science, environmental management, gov-
ernment services, public health, public safety, transporta-
tion, tourism, etc.

Figure 1: An example of co-location pat-
terns found among different types of businesses
in a city. A=Auto dealers, R=auto Repair
shops, D=Department stores, G=Gift stores and
H=Hotels.
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Figure 2: Examples to illustrate different approaches to discover co-location patterns (b) An explicit transac-
tionization of a spatial dataset can split instances of co-locations. (c) The non-overlapping grouping method
can generate sets of different instances. (d) The instance join method generates complete instances but
computation is expensive.

Co-location rule discovery is a process to identify co-location
patterns from an instance dataset of spatial boolean events.
It is not trivial to adopt association rule mining algorithms [1,
8, 13, 18] to mine co-location patterns since instances of spa-
tial events are embedded in a continuous space and share a
variety of spatial relationships. Reusing association rule al-
gorithms may require transactionizing spatial datasets, which
is challenging due to the risk of transaction boundaries split-
ting co-location pattern instances across distinct transac-
tions. Figure 2 (a) shows an example spatial dataset with
three spatial events, A, B, and C. Each instance is repre-
sented by its event type and unique instance id, e.g., A.1.
Solid lines show neighbor relationships over event instances.
For example, {A.2, B.4, C.2} and {A.3, B.3, C.1} are the
instances of co-location {A, B, C} since their event instances
are neighbors of each other. Figure 2 (b) shows the problem
of explicit transactionization. Rectangular grids are used to
produce transactions over the spatial dataset. As can be
seen by the solid line circle, the only identified instance of
co-location {A, B, C} is {A.2, B.4, C.2}. The instance {A.3,
B.3, C.1} is missed due to the split caused by the transaction
boundaries.
Related Work: In previous work on co-location pattern
discovery, a few approaches have been developed to iden-
tify instances of candidate co-location patterns. One ap-
proach [12] groups neighboring instances arbitrarily with a
non-overlapping instance grouping constraint. This disjoint
grouping method may yield different instance sets by the
order of grouping. For example, Figure 2 (c) illustrates dif-
ferent instance sets of co-location {A, B, C} by the order
of grouping instances of size 2 co-location {A, B}. If an in-
stance {A.4, B.3} is first grouped, the instance {A.3, B.3}
is not identified since B.3 already belongs to instance {A.4,
B.3} even if it is a neighborhood instance. Consequently,
the instance {A.3, B.3, C.1} of co-location {A, B, C} is also
not found.

Another approach [15] generates instances of candidate
co-locations without any missing by using an instance join
method. For example, in Figure 2 (d), the instances of co-

location {A, B} and the instances of co-location {A, C} are
joined and their neighbor relations are checked for gener-
ating instances of co-location {A, B, C}. {A.2, B.4, C.2}
and {A.3, B.3, C.1} are correctly generated. The join-based
algorithm may be useful in analyzing datasets of sparse in-
stances. However, scaling the algorithm to substantially
large dense spatial datasets is challenging due to the in-
creasing number of co-location patterns and their instances.
Other co-location mining work [17] presents a framework for
extended spatial objects, e.g., polygons and line strings. It
also uses an instance join method to identify nearby spatial
objects.

This paper proposes a novel approach for efficient co-
location pattern mining. We make the following contribu-
tions.
Our Contributions: First, we identified the computa-
tional bottleneck in the execution time of the join-based
co-location mining algorithm [15]. A large fraction of the al-
gorithm is devoted to computing joins to identify instances
of candidate co-location patterns. Second, we propose a
novel partial-join approach for mining co-location patterns
efficiently. It transactionizes continuous spatial data while
keeping track of the spatial information not modeled by
transactions. This approach is based on an important ob-
servation that only event instances having at least one cut
neighbor relation are related to co-location instances split
over transactions. Third, we present an efficient co-location
mining algorithm to concretize the partial-join approach. It
uses a transaction-based Apriori algorithm [1] as a building
block and adopts the instance join method [15] of the join-
based co-location mining algorithm for generating residual
co-location instances not identified by transactions. Fourth,
we prove that the partial join algorithm is correct and com-
plete in finding all co-location rules with prevalence and con-
ditional probability above the given thresholds. Fifth, we
provide an algebraic cost model to characterize the dom-
inance zone of the performance between our partial-join
algorithm and the join-based algorithm. Finally, we con-
ducted experiments using a real dataset as well as synthetic



datasets. The experimental evaluation shows that our algo-
rithm is computationally more efficient than the full join-
based mining algorithm.

The remainder of the paper is organized as follows. Sec-
tion 2 presents an overview of basic concepts of co-location
pattern mining. In Section 3, we present the partial join ap-
proach for efficient co-location mining. Section 4 describes
the partial join co-location mining algorithm. The proofs of
correctness and completeness of the algorithm, and an alge-
braic cost model are given in Section 5. Section 6 presents
experimental evaluations. We give the conclusion and dis-
cuss future work in Section 7.

2. CO-LOCATION PATTERN MINING:
BASIC CONCEPTS

This section describes the basic concepts for mining co-
location patterns.

Given a set of boolean spatial events E = {e1, . . . , ek},
a set S of their instances {i1, . . . , in}, and a reflexive and
symmetric neighbor relation R over S, a co-location C is a
subset of boolean spatial events, i.e., C ⊆ E whose instances
I ⊆ S form a clique [3] using neighbor relation R. For
simplicity, we use a metric-based neighbor relation R, i.e.,
neighbor(i1, i2) between event instances i1 and i2 defined
by Euclidean distance(i1, i2) ≤ a user-specified threshold is
used as a neighbor relation R.

A co-location rule is of the form: C1 → C2(p, cp), where
C1 and C2 are disjoint co-locations, p is a value representing
the prevalence measure, and cp is the conditional probabil-
ity.

A neighborhood instance I of a co-location C is a row
instance (simply, instance) of C if I contains instances of all
events in C and no proper subset of I does so. For example,
in Figure 2 (d), {A.1, B.1} is a row instance of co-location
{A, B}. {A.3, C.1, C.3} is a neighborhood in Figure 2 (a)
but it is not a row instance of co-location {A, C} because
its subset {A.3, C.1} contains instances of all events in {A,
C}. The table instance of a co-location C is the collection
of all row instances of C. For example, the table instance
of {B, C} in Figure 2 (d) has two row instances, {B.3, C.1}
and {B.4, C.2}.

The conditional probability, Pr(C1|C2), of a co-location
rule C1 → C2 is the probability of finding an instance of C2

in the neighborhood of an instance of C1. Formally, it is

estimated as
|πC1

(table instance of C1∪C2)|

|table instance of C1|
, where π is a pro-

jection operation with duplication elimination.
The participation index, Pi(C) is used as a co-location

prevalence measure. The participation index of a co-location
C = {e1, . . . , ek} is defined as minei∈C{Pr(C, ei)}, where
Pr(C, ei) is the participation ratio for event type ei

in a co-location C. Pr(C, ei) is the fraction of instances
of ei which participate in any instance of co-location C,
|πei

(table instance of C)|

|table instance of ei|
, where π is a projection operation with

duplication elimination. For example, in Figure 2 (a), the
total number of instances of event type A is 4 and the to-
tal number of instances of event type C is 3. From Fig-
ure 2 (d), the participation index of co-location c={A, C} is
min{Pr(c, A), Pr(c,C)} = 3/4 because Pr(c, A) is 3/4 and
Pr(c,C) is 3/3. A high participation index value indicates
that the spatial events in a co-location pattern likely show
up together.

Lemma 1. The participation ratio and the participation
index are monotonically non increasing with the size of the
co-location increasing.

Proof. Please refer to [15] for the proof.

Lemma 1 ensures that the participation index can be used
to effectively prune the search space of co-location pattern
mining.

3. PARTIAL JOIN APPROACH FOR
CO-LOCATION PATTERN MINING

This section defines our partial join approach for efficient
co-location pattern mining.

3.1 Problem Definition
We formalize the co-location mining problem as follows:

Given:
1) A set of k spatial event types E = {e1, . . . , ek} and a set
of their instances S = {i1, . . . , in}, each i ∈ S is a vector <

instance id, spatial event type, location >, where location ∈
a spatial framework
2) A symmetric and reflexive neighbor relation R over loca-
tions
3) A minimal prevalence threshold (min prev) and a mini-
mal conditional probability threshold (min cond prob)
Find:
Find a correct and complete set of co-location rules with
participation index > min prev and conditional probability
> min cond prob.
Objective:
Minimize computation cost.
Constraints:
1) R is a distance metric based neighbor relation.
2) Ignore edge effects in R.
3) Correct and complete in finding all co-location rules sat-
isfying given thresholds.
4) Spatial dataset is a point dataset.

3.2 Partial Join Approach
The basic idea of the partial join approach is to reduce the

number of instance joins for identifying instances of candi-
date co-locations by transactionizing a spatial dataset un-
der a neighbor relationship and tracing only residual neigh-
borhood instances cut apart via the transactions. The key
component of our approach is how we identify instances of
co-locations split across explicit transactions. It is based on
an observation that only event instances having at least one
cut neighbor relationship are related to the neighborhood
instances split over transactions. To formalize this idea, we
provide a set of definitions of key terms related to the partial
join approach.

Definition 1. A neighborhood transaction(simply,
transaction) is a set of instances T ⊆ S that forms a clique
using a neighbor relation R. A spatial dataset S is parti-
tioned to a set of disjoint transactions {T1, . . . , Tn} where
Ti ∩ Tj = ∅, i 6= j and ∪(T1, . . . , Tn) = S.

We assume a spatial dataset S can be partitioned to a
set of distinct transactions, i.e., each event instance i ∈ S

belongs to one transaction. For example, Figure 4 shows a
set of transactions on the same example spatial dataset of
Figure 2 (a). The dashed circle represents a neighborhood



region centered at an arbitrary location on a spatial frame-
work. The instances within the dashed circle are neighbors
of each other and thus forms a transaction. For example, B.2
and B.5 form a transaction. A spatial dataset can be differ-
ently transactionized according to the partitioning method
used. Thus the transactions generated using rectangular
grids in Figure 2 (b) are a little different from the trans-
actions illustrated in Figure 4. For example, in Figure 4,
{A.3, C.1, C.3} forms a single transaction. By contrast, in
Figure 2 (b), it is divided into two transactions, {A.3, C.3}
and {C.1}. We will examine the effect of different transac-
tionization methods in future work.

Definition 2. A row instance I of a co-location C is an
intraX row instance (simply, intraX instance) of C if all
instances i ∈ I belong to a common transaction T . The
intraX table instance of C is the collection of all intraX
row instances of C.

For example, in Figure 4, {A.3, C.1} is an intraX instance
of co-location {A, C} but {A.1, C.1} is not since its event
instances A.1 and C.1 are members of different transactions.
The intraX table instance of {A, C} consists of {A.3, C.1},
{A.3, C.3} and {A.2, C.2}.

Definition 3. A neighbor relation r ∈ R between two
event instances, i1, i2 ∈ S, i1 6= i2 is called a cut neighbor
relation if i1 and i2 are neighbors of each other but belong
to distinct transactions.

Figure 4 presents cut neighbor relations as dotted lines.
{A.1, C.1}, {A.3, B.3} and {B.3, C.1} has cut neighbor
relations.

Definition 4. A row instance I of a co-location C is an
interX row instance (simply, interX instance) of C if all
instances i ∈ I have at least one cut neighbor relation. The
interX table instance of C is the collection of all interX
row instances of C.

For example, in Figure 4, {A.3, B.3} is an interX instance
of co-location {A, B} because A.3 has a cut neighbor relation
with B.3 and B.3 also has cut neighbor relations with A.3
and with C.1. Note {A.3, C.1} is an interX instance as well
as an intraX instance of {A, C}. InterX table instance of
{A, C} has two interX instances {A.1, C.1} and {A.3, C.1}.

Instances
InterX

Instances
IntraX

Size
Co−location Size 4Size 3

Figure 3: The cases of possible instances of size 3
and of size 4 co-locations over transactions

Figure 3 illustrates the possible instances of size 3 co-
location and of size 4 co-location located over neighborhood
transactions. Black dots signify event instances, circles are
transactions, and lines show neighbor relations between two
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Figure 4: An illustration of the partial join co-
location mining algorithm

event instances. Especially, dotted lines signify cut neighbor
relations. There are two types of instances of co-locations.
One is all event instances of a co-location instance belong
to a single transaction. The other is the event instances
are distributed across two or more transactions. The for-
mer is the case of an intraX instance and the latter is an
interX instance. We can notify all event instances of in-
terX instances are related to at least one cut neighbor rela-
tion(dotted lines).

Lemma 2. For a co-location C, the table instance of C

is the union of intraX table instance of C and interX table
instance of C.

Proof. The table instance of a co-location C is the col-
lection of all (row) instances of C. First, we will show any
instance, I = {i1, . . . , in} of C is an intraX instance of C

or an interX instances of C. Since I forms a clique using a
neighbor relation, all event instances of I can be included in
a single neighborhood transaction according to definition 1.
I becomes an intraX instance. By contrast, if all event in-
stances of I are not in a single transaction, each member
should have at least one cut neighborhood relation with the
other members in different transactions due to their clique
relation. Thus, I becomes an interX instance. Second, all
instances of intraX table instance and interX table instance
of C are row instances whose event instances form a clique
according to definition 2 and definition 4 .

4. PARTIAL JOIN CO-LOCATION MINING
ALGORITHM

This section describes the partial join co-location min-
ing algorithm. A transaction-based Apriori algorithm [1] is
used as a building block to identify all intraX instances of
co-locations. InterX instances are generated using general-
ized apriori gen function [15] of the join-based co-location
mining algorithm. This approach is expected to provide a
framework for efficient co-location mining since all instances



in the transaction are neighbors of each other and no spa-
tial operation and combinatorial operation, i.e., join, is re-
quired to find instances of candidate co-locations within a
transaction, i.e., intraX instances. The computation cost of
instance join operations for generating only interX instances
not identified in the transactions is relatively cheaper than
one for finding all instances of co-locations. The partial-
join mining algorithm for co-location patterns is described
as follows.

Inputs
E:a set of boolean spatial event types

S:a set of instances

<event type, event instance id, location>

R:a spatial neighbor relation

min prev:prevalence value threshold

min cond prob:conditional probability threshold

Output
A set of all prevalent co-location rules with

participation index greater than min prev

and conditional probability greater than

min cond prob

Variables
k:co-location size

T:a set of transactions

Ck:a set of size k candidate co-locations

Pk:a set of size k prevalent co-locations

Rk:a set of size k co-location rules

IntraXk:intraX table instances of Ck

InterXk:interX table instances of Ck, Pk

Method
1) (T, InterX2)=transactionize(S, R);

2) k = 1; C1 = E; P1 = E;

3) while (not empty Pk) do {
4) Ck+1=gen candidate co-location(Pk);

5) for all transaction t ∈ T

6) IntraXk+1=gather intraX instances(Ck+1 , t);

7) if k ≥ 2
8) InterXk+1=gen interX intances(Ck+1, InterXk, R);

9) Pk+1=select prevalent co-location

10) (Ck+1, IntraXk+1

S
InterXk+1, min prev);

11) Rk+1=gen co-location rule(Pk+1, min cond prob);

12) k = k + 1;
13) }
14) return

S
(R2, . . . , Rk+1);

Algorithm 1: Partial join co-location algorithm

Transactionization of a spatial dataset : Given a spa-
tial dataset and a neighbor relation, the spatial dataset is
partitioned for generating neighborhood transactions. There
are several partitioning methods adopted for neighborhood
transactions, e.g., grids [14], maximal cliques[3], max-clique
agglomerative clustering [20], min cut partitioning [6] etc.
The ideal case is a method to generate a set of maximal
cliques with minimizing the number of edges cut by parti-
tions. In the case of a simple grid partitioning, rectangular
grids of a proximity neighborhood size d × d, where d is
a neighbor distance metric, are posed on a spatial frame-
work, and event instances in each cell are gathered for a
transaction. Cut neighbor relations can be detected by ex-
amining all pairs (i1, i2) of instances in neighboring cells,
i.e., (i1, i2) ∈ R and i1.trans no 6= i2.trans no, where R

is a neighbor relation. It can be implemented using geo-

metric approaches, e.g., plane sweep [2], space partition-
ing [9], tree matching [10]. Size 2 interX instances are gen-
erated from all pairs(i1, i2) of instances having cut neigh-
bor relations in each transaction, i.e., i1 ∈ B, i2 ∈ B and
i1.trans no = i2.trans no, where B is a set of event in-
stances having cut neighbor relations , as well as cut neigh-
borhood instances.

Generation of candidate co-locations : We use the
apriori gen [1] for generating candidate co-location sets.
Size k + 1 candidate co-locations are generated from size
k prevalent co-locations. The anti-monotonic property of
the participation index makes event level pruning feasible.

Scanning transactions and gathering intraX instances
: In each iteration step, the transactions are scanned and
the intraX instances of candidate co-locations are enumer-
ated. This step is similar to the apriori algorithm. However,
notice that the transactions of a spatial event dataset differ
from the transactions of a market basket dataset. The tradi-
tional market basket data transaction has only boolean item
types, i.e., an item is present in a transaction or not. By
contrast, each item of our neighborhood transaction consists
of an event type and its instance id as described in Figure 4.
One event type can have several instances in a transaction.
To reuse an efficient trie data structure [4, 7] in determining
instances of candidate co-locations in a transaction, we con-
vert several items of same event type with different instance
ids to one event type item having a bitmap structure [5] in
which corresponding instance id bits are set. The converted
transactions are searched for gathering intraX instances of
co-locations. Figure 4 shows a conceptual set of intraX table
instances. Actually, all instances are enumulated in the trie
structure of itemsets using bitmaps.

Generation of interX table instances : The interX table
instance of Ck+1, k ≥ 2 are generated from interX table in-
stance of Ck using the generalized apriori gen function [15].
The SQL-like syntax is described below.

forall co-location ck+1 ∈ Ck+1

insert into ck+1.interX table instance

select p.instance1, p.instance2, . . . , p.instancek

, q.instancek

from ck.interX table instance1 p

, ck.interX table instance2 q

where (p.instance1, . . . , p.instancek−1)

= (q.instance1, . . . , q.instancek−1)

and (p.instancek, q.instancek) ∈ R;

end;

In Figure 4, an interX table instance of {A, B} having
{A.3, B.3} and an interX table instance of {A, C} having
{A.1, C.1} and {A.3, C.1} are joined to produce interX ta-
ble instance of {A, B, C}.

Selection of Prevalent Co-locations: The participation
index of co-location Ck+1 is calculated from the union of in-
traX table instance(Ck+1) and interX table instance(Ck+1).
Candidate co-locations are pruned using a given prevalence
threshold, min prev. In Figure 4, co-location {B, C} has
two instances, i.e., one is an intraX instance, {B.4, C.2} and
the other is an interX instance {B.3, C.1}. The participa-
tion index of co-location {B, C} is min{2/5, 2/3} = 2/5.



If min prev is given as 1/2, the candidate co-location {B,
C} is pruned because its prevalence measure is less than 1/2.

Generation of Co-location Rules: This step generates
all co-location rules with high conditional probability above
a given min cond prob.

5. ANALYSIS OF THE PARTIAL JOIN
CO-LOCATION MINING ALGORITHM

In this section, we analyze the partial join co-location min-
ing algorithm for completeness, correctness and computa-
tional complexity. Completeness implies that no co-location
rule satisfying given prevalence and conditional probability
thresholds is missed. Correctness means that the participa-
tion index values and conditional probability of generated
co-location rules meet the user specified threshold.

5.1 Completeness and Correctness

Lemma 3. The partial join co-location mining algorithm
is correct.

Proof. The partial join co-location mining algorithm is
correct if co-location patterns produced by algorithm 1 meets
the thresholds of prevalence value and conditional probabil-
ity. First, we will show that intraX instances and interX
instances are correct in the neighbor relation. Step 1 in al-
gorithm 1 generates neighborhood transactions according to
definition 1. Thus the intraX instances gathered in step 6
are correct in the neighbor relation. The interX instances
generated in step 8 are proved by the correctness of gener-
alized apriori gen algorithm [15]. That is, all instances of a
generated interX instance are neighbor of each other. Sec-
ond, step 9 ensures that only prevalent co-location sets are
selected. Thus step 11 returns co-location rules above given
thresholds correctly.

Lemma 4. The partial join co-location mining algorithm
is complete.

Proof. We prove if a co-location is prevalent, it is found
by algorithm 1. First, the monotonicity of the participation
index in lemma 1 proves the completeness of the event level
pruning of candidate co-locations using apriori gen in step
4. Second, we will show that the intraX table instances and
the interX table instances generated from algorithm 1 are
complete, which will imply that all instances of co-locations
are complete according to lemma 2. All intraX table in-
stances are completely found by the apriori algorithm in
step 6. Size 2 interX table instances generated from step
1 are a superset of all neighboring instances necessary to
generate size k + 1, k ≥ 2 interX instances. In step 8, the
completeness of the instance join method to generate interX
instances is the same as that of generalized apriori gen [15].
In step 11, enumeration of the subsets of each of the preva-
lence co-locations ensures that no spatial co-location rules
satisfying given prevalence and conditional probabilities are
missed.

5.2 Computational Complexity Analysis
This section compares the computational cost of the join-

based co-location mining algorithm and the partial join al-
gorithm. Let Tjb(k+1) and Tpj(k+1) represent the costs of
iteration k of the join-based algorithm and the partial join

algorithm respectively.

Tjb(k + 1) = Tgen candi(Pk)
+ Tgen inst(table insts of Pk) + Tprune(Ck+1)
≈ Tgen inst(table insts of Pk)

Tpj(k+1) = Tgen candi(Pk)+Tgath intraX inst(transactions)
+ Tgen interX inst(interX table insts of Pk) +Tprune(Ck+1)
≈ Tgen interX inst(interX table insts of Pk)

In the above equations, Tgen candi(Pk) represents the cost
of generating size k+1 candidate co-location with the preva-
lent size k co-locations. Tgen inst(table insts of Pk) repre-
sents the cost of generating table instances of size k + 1
candidate co-locations with size k table instances.
Tgath intraX inst(transactions) is the cost of scanning trans-
actions and gathering the instances of the size k + 1 candi-
date co-locations. Tgen interX inst(interX table inst of Pk)
is the cost of generating interX table instances of the size
k + 1 candidate co-locations with size k interX table in-
stances. Tprune(Ck+1) represents the cost for pruning non
prevalent size k + 1 co-locations.

The bulk of time is consumed in generating instances.
We assume that the cost of gathering intraX instances from
transactions is relatively cheaper than instance join cost,
and that the other factors, Tgen candi(Pk) and Tprune(Ck+1)
are illegible. Thus the computational ratio of the partial join
algorithm over the join-based algorithm can be simplified as

Tpj(k + 1)

Tjb(k + 1)
≈

Tgen interX inst(interX table insts of Pk)

Tgen inst(table insts of Pk)

The computational ratio is affected by the size of interX
table instances and the size of table instances of co-location
Pk. The dominance factors affecting the number of interX
instances and the number of total instances can be the num-
ber of cut neighbor relations and the data density of the
neighborhood area. When the number of cut neighbor rela-
tions is fixed and the data density in a neighborhood area
grows, the size of table instances increases rapidly and the
cost to generate the table instances is much greater than the
cost to generate interX table instances. By contrast, as the
number of cut neighbor relations increases, the size of interX
table instances increases. Thus the average cost to gener-
ate interX table instances grows. When all instances have
cut neighbor relations, they are involved in interX table in-
stances thus the cost to generate the interX table instances
is similar to the cost to generate table instances in the join-
based algorithm. In our experiments, as described in the
next section, we use the data density in neighborhood area
and the ratio of cut neighbor relations as key parameters to
evaluate the algorithms. We can expect that the partial join
approach is likely more efficient than the join-based method
when the locations of spatial events are clustered in neigh-
borhood areas and the number of cut neighbor relations is
smaller.

6. EXPERIMENTAL EVALUATION
We evaluated the performance of the partial join algo-

rithm with the join-based approach using synthetic and real
datasets. In Subsection 6.1, we describe an overall exper-
imental design and a synthetic data generator. In Subsec-
tion 6.2, we evaluate the computational efficiency gained
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Figure 5: Experimental Design

from our partial join co-location algorithm with synthetic
datasets by studying the parameters that affect performance.
Subsection 6.3 compares the performance of the algorithms
using a real dataset.

6.1 Experiment Design
Figure 5 shows an overall experiment layout. Synthetic

datasets were generated using a methodology similar to the
methodology used to evaluate the join-based algorithm [15].
We added some parameters and procedures in it to generate
transactionized instances and cut neighbor relations. The
synthetic data generator allows better controls in studying
the effects of interesting parameters. First we describe the
layout of an overall spatial framework. For simple trans-
actionization of a spatial dataset, we posed grids of neigh-
borhood size d × d on a rectangle spatial framework of size
D1×D2. Each grid cell is implicitly divided into two parts, a
core area and an overlapping area. The core area is an area
in which event instances have neighbor relationships with
only instances in its grid cell. By contrasts, instances in
the overlapping area are also under neighbor relations with
instances in its neighboring cells. This area was used for
generating cut neighbor relations.

The synthetic spatial datasets were generated as follows.
Given a number of base co-location patterns, Nco loc, the
size of each co-location n1 was picked from a Poisson distri-
bution with mean λ1. We assigned randomly chosen sets of
event types to the co-location patterns. The number of base
instances of each co-location n2 was chosen from another
Poisson distribution with mean λ2. Our data generator is
also controlled by two other parameters, cut instance ratio
α and spatial framework size β. The cut instance ratio was
used for controlling the number of cut neighbor relations in
the experiment. (1−α)∗n2 instances were generated in the
core area of a randomly chosen cell. α ∗ n2 instances were
generated over its overlapping area and the overlapping ar-
eas of its neighboring cells. For simply controlling the data
density value under datasets of the same size, we changed
the size of the overall spatial framework. To increase the
density value, we used a smaller spatial framework but the
same neighborhood size d × d.

The partial join co-location algorithm and the join-based
co-location algorithm were executed using generated spatial
datasets and a real set of climate data from NASA. The per-
formance of the two algorithms was evaluated by execution
time. The average co-location size and the average number
of instances of co-locations of the generated datasets are
likely different from the initial parameter values after gener-

ating cut instances and also according to the size of choosen
spatial framework for controlling the data density. We will
address the effect of these parameters and noise data on
performance in future work. All the experiments were per-
formed on a Sun SunBlade 1500 with 1.0 GB main memory
and 177MHz CPU.

6.2 Performance Study
The experiment was conducted using detailed simulations

to answer the following questions :
1. How does the ratio of cut neighbor relations over total
neighbor relations affect the performance ?
2. How does data density in the neighborhood area affect
the performance ?
3. How do the algorithms behave with different prevalence
thresholds ?

The common parameter values used in these experiments
were as follows: the neighborhood size to define a co-location,
d × d, is 10 × 10, the number of base co-locations, Nco loc,
is 20, the average size of co-location patterns, λ1, is 4 and
the average size of co-location instances, λ2, is 50.
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Figure 6: Effect of ratio of cut neighbor relations
over total neighbor relations

Effect of ratio of cut neighbor relations : The effect
of performance by the ratio of cut neighbor relations over to-
tal neighbor relations was evaluated with synthetic datasets
generated using the above common parameters and differ-
ent cut instance ratios, i.e., 0, 0.1, 0.2, 0.3, etc. The size of
the overall spatial framework was fixed to 400 × 400. The
prevalence threshold was set to 0.2.

Figure 6 shows the execution time of both algorithms, the
partial join and the join-based, over cut neighbor relation
ratios. The ratio of cut neighbor relations over total neigh-
bor relations was controlled by the cut instance ratio in the
experiment. The overall execution time increased with in-
creases in the ratio. The reason is, that as the ratio of cut
relations becomes larger, the size of interX table instances
increases. This causes the number of instances involved in
the join operation to grow and the execution time to in-
crease. The join-based algorithm also shows an increase in
its execution time. This happens because the number of in-
stances in the overlapping area increases and the possibility
of neighbor relations with instances in the nearby cells in-
creases, thus generating many neighborhood instances. The
average size of table instances also increases.



Table 1: A comparison of size 2 instances

Data density Number of Number of
in the neighborhood size 2 interX size 2

area instances instances
of partial join of join-based

0.07 2,429 18,450
0.09 2,892 24,696
0.10 3,426 30,233
0.12 3,496 31,099
0.13 4,268 39,583
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Figure 7: Effect of data density on neighborhood
area

The performance difference between the two algorithms de-
creases with increases in the number of cut neighborhoods.
When all event instances were related to cut neighbor rela-
tions, the two algorithms showed similar execution time.

Effect of data density in the neighborhood : The ef-
fect of data density in the neighborhood area was evaluated
with spatial datasets generated using the above common
parameters and spatial frameworks of different size β, i.e.,
500 × 500, 400 × 400, 360 × 360, etc., to control the data
density on the neighborhood. The cut instance ratio α was
fixed to 0.1 and the prevalence measure was set to 0.2. The
density value was calculated from the generated dataset. It
is the ratio of the average number of instances in a neigh-
borhood area over the size of the square neighborhood area,
10 × 10. The increase of data density in this experiment
mainly affects to data density in the core area since the cut
instance ratio is fixed.

Figure 7 illustrates the performance gain by the partial
join algorithm. As the density increases, the execution time
of the join-based algorithm is dramatically increased. By
contrast, the partial join algorithm shows little effect from
the size of data density in the neighborhood area. A small-
scale increase of data in the the neighborhood area does
not much affect the transaction-based algorithm while the
join-based method shows great sensitivity to even a small
increase of the data density. Table 1 shows a comparison
between the number of size 2 interX instances generated by
the partial join algorithm and the number of size 2 instances
of the join-based algorithm. These instances are involved in
instance join operations for generating size 3 instances. As

can be seen, the partial join approach had much fewer in-
stances than the join-method in this experiment.

Effect of prevalence threshold : The performance ef-
fect as the prevalence threshold increases is given in Fig-
ure 8. The experiment was conducted with the above com-
mon parameters, a 400×400 spatial framework and a 0.3
cut instance ratio. The partial join approach showed much
better performance than the join-based approach when the
threshold values were low. However, the gap dramatically
decreased with increases in the threshold value. The reason
is the decrease in the number of joins of instances due to the
efficient pruning of the event level search space.
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Figure 8: Effect of prevalence threshold

6.3 Experiment on a Real Dataset
We evaluated the partial join algorithm and the join-based

algorithm using a NASA climate dataset of the U.S. region.
All events were extracted at the threshold 1.5 using Z score
transformation [16]. The number of event types was 18.
The total number of event instances was 15,515. When the
neighborhood distance threshold was 4, the total number of
size 2 neighborhood instances was 390,392 and the number
of size 2 cut neighborhood instance(size 2 interX instances)
was 314,078. When the prevalence threshold was 0.1, the
maximum size of co-locations was 5. Figure 9 presents the
execution time of the two algorithms as a function of the
prevalence threshold. The partial join method shows rela-
tively better performance.
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Figure 9: A comparison using a real dataset



7. CONCLUSION AND FUTURE WORK
In this paper, we identified the limitations of the current

co-location mining algorithm and proposed a novel partial-
join approach for mining complete and correct co-location
patterns. This approach transactionizes continuous spatial
data while keeping track of the spatial information not mod-
eled by transactions. To concretize this approach, we pro-
posed an efficient partial join co-location algorithm to adopt
the instance join method on the framework of the Aprioir
algorithm. We provided an algebraic cost model to charac-
terize the dominance zone of the performance between the
partial-join approach and the join-based method. The per-
formance study showed that our approach is computation-
ally more efficient and is especially robust in data density
on the neighborhood.

In future work, first, we plan to develop an alternative ef-
ficient join algorithm for generating instances of co-locations
without including duplicate instances in intraX table in-
stances and interX table instances. This approach will fur-
ther reduce the number of instance joins. The algorithm will
be robust in any dataset, e.g., dense datasets with many
cut neighborhoods. Second, we used a regular grid based
transactionziation. We plan to examine different transac-
tionization methods, e.g., maximal cliques[3], max-clique
agglomerative clustering [20], min cut partitioning [6] etc.
Third, recent work [19] on the co-location mining presents
a general method to find the maximal patterns of reference
feature centric co-locations and clique co-locations consid-
ering memory constraints. It uses techniques of spatial join
algorithms, e.g., partition-based spatial join [9] , multiway
spatial join [11]. We plan to compare our approach to the
spatial join-based method. Finally, although current co-
location patterns are defined over spatial features, data in
many applications include spatio-temporal features. Thus
we also plan to explore a co-location mining method for
spatio-temporal datasets.
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