
Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Chapter 8:  Main Memory



8.2 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Chapter 8:  Memory Management

p Background
p Swapping 
p Contiguous Memory Allocation
p Paging
p Structure of the Page Table
p Segmentation
p Example: The Intel Pentium



8.3 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Background –기본하드웨어

p Main memory and registers는 CPU가접근할수
있는유일한 storage
n 즉, Disk에저장된데이터라도일단메모리에먼저 load 
되어야함

n CPU에의해실행되는모든명령은메모리주소만을
인수로사용해야함

p Register VS. Main Memory
n Register : one CPU clock (or less)
n Main memory  : Many Clock Tick Cycle

p Cache : Register와 Main Memory 사이의속도차이에
의해 stall(지연) 현상발생을완화시킴(L1, L2)

p Memory의보호(protection)전략필요



8.4 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Background –기본하드웨어

p A pair of base and limit registers define the 
logical address space



8.5 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Background – Address Binding

p 메모리주소가바인딩되는시점들

n 컴파일시점(Compile time):
p 메모리위치가사전에알려진다면, 절대위치값을갖는
코드(absolute code)가생성될수있음

§ 반드시그주소에서실행되며, 옮길경우재컴파일

n 적재시점(Load time):  
p 실행될곳의주소가메모리가적재되는시점에확정되는
경우로서, 컴파일시점에알려지지않은위치값을
재위치시키기위한코드(relocatable code)를생성

n 실행시점(Execution time):  
p 컴파일할때생성된주소대로 CPU가실행하고, CPU가
메모리로주소를보내는실행시점에 binding

§ 별도의주소변환하드웨어가필요

§ *.dll 파일들



8.6 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Background – Address Binding

사용자 프로그램의 단계별 처리과정



8.7 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Background –주요개념
p 논리주소와물리주소

n Logical address – generated by the CPU; also 
referred to as virtual address

n Physical address – address seen by the 
memory unit

p Memory-Management Unit (MMU)
p CPU가메모리에접근하는것을관리하는컴퓨터
하드웨어부품

p 가상메모리주소를실제메모리주소로변환

n Relocation Register
p In MMU scheme, the value in the relocation 

register is added to every address generated by a 
user process at the time it is sent to memory



8.8 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Background –논리주소 vs 물리주소

Relocation Register를 이용한 동적 재배치



8.9 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

메모리할당전략

p 연속메모리할당

n 단일프로그래밍/연속할당
n 멀티프로그래밍/고정분할(Fixed Partition)
n 멀티프로그래밍/가변분할(Variable Partition)

p 비연속메모리할당

n 페이징(Paging) 기법

n 세그멘테이션(Segmentation) 기법



8.10 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Contiguous Allocation (Cont.)-할당방법

p 연속할당전략(가변분할)
n 각프로세스가요청하는크기에맞추어메모리공간을할당해
주는전략

n 프로세스의종료와신규실행에따라메모리에단편화현상이
발생(Hole)

p 조각화를최소화할수있는프로세스배치전략이요구됨

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

빈공간 리스트와 사용공간 리스트로 관리



8.11 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

배치전략 - Dynamic Storage-Allocation Problem

p First-fit:  Allocate the first hole that is big enough
p Best-fit:  Allocate the smallest hole that is big enough; 

must search entire list, unless ordered by size  
n Produces the smallest leftover hole

p Worst-fit:  Allocate the largest hole; must also search 
entire list  
n Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes

First-fit and best-fit better than worst-fit in terms of 
speed and storage utilization



8.12 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

연속할당의문제점 - Fragmentation

p 단편화(Fragmentation)의정의
n 프로그램들이사용하지못하는메모리공간조각부분

p 단편화의종류

n 외부단편화(External Fragmentation)
p 빈공간리스트에속하는공간중크기가너무작아어느누구도
쓸수없는공간

n 내부단편화(Internal Fragmentation )
p 프로그램이요구한것보다더큰공간을할당한경우낭비되는부분

§ 예) 512byte block에서 100byte만사용한경우



8.13 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

연속할당의문제점

p 외부단편화해결방안

n 통합(Coalescing)
p 빈공간리스트의공간들중연속된공간이있는경우통합

n 압축(Compaction)
p 사용중인프로세스들을옮겨모든빈공간을하나로모음

p 사용자프로그램의크기가커서적재가어려울경우

n 오버레이(overlay) 기법
n 비연속기억장치할당기법

n 스와핑(swapping) 기법



8.14 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

메모리관리 - Paging

p 기본방법

n Divide physical memory into fixed-sized blocks called frames
p Frames : size is power of 2, between 512 bytes and 8,192 

bytes
n Divide logical memory into blocks of same size called pages

n To run a program of size n pages, need to find n free frames 
and load program

n Page table 이용맵핑: logical to physical addresses

p Internal fragmentation 발생



8.15 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

메모리관리 - Paging



8.16 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Paging - Address Translation Scheme

p Address generated by CPU is divided into:

n Page number (p) – used as an index into a page table
which contains base address of each page in physical 
memory

n Page offset (d) – combined with base address to define 
the physical memory address that is sent to the memory 
unit

n For given logical address space 2m and page size 2n

page number page offset

p d

m - n n



8.17 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Paging - Paging Hardware



8.18 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Paging - Paging Model of Logical and Physical Memory



8.19 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Paging - Paging Example

32-byte memory and 4-byte pages



8.20 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Paging - Free Frames

Before allocation After allocation



8.21 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Paging –하드웨어지원

p PTBR과 PRLR을이용한 Page Table 접근속도향상
n Page-table base register (PTBR) points to the page table
n Page-table length register (PRLR) indicates size of the page table

p In this scheme every data/instruction access requires two memory 
accesses.  One for the page table and one for the data/instruction.

p TLB를이용한하드웨어가속
n The two memory access problem can be solved by the use of a 

special fast-lookup hardware cache called associative memory or 
translation look-aside buffers (TLBs)

p ASID를이용한 TLB 속도향상
n Some TLBs store address-space identifiers (ASIDs) in each TLB 

entry – uniquely identifies each process to provide address-space 
protection for that process



8.22 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Associative Memory

p Associative memory – parallel search 

Address translation (p, d)
n If p is in associative register, get frame # out
n Otherwise get frame # from page table in memory

Page # Frame #



8.23 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Paging Hardware With TLB



8.24 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

TLB를이용한 Effective Access Time

p Associative Lookup = e time unit
p Assume memory cycle time is 1 microsecond
p Hit ratio – percentage of times that a page 

number is found in the associative registers; 
ratio related to number of associative registers

p Hit ratio = a
p Effective Access Time (EAT)

EAT = (1 + e) a + (2 + e)(1 – a)
= 2 + e – a



8.25 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

TLB를이용한 Effective Access Time

p Access Time 계산의예
n 가정

p TLB 탐색시간 : 20nano
p 메모리접근시간 : 100nano

§ TLB에있다면접근시간 : 120 nano
§ TLB에없다면접근시간 : 220 nano

n Hit Ratio에따른접근시간예측
p Hit Ratio  80%인경우

§ Access time = 0.8*120 + 0.2 * 220 = 140 nano
p Hit Ratio 98%인경우

§ Access time = 0.98*120 + 0.02*220 = 122 nano



8.26 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Memory Protection

p Memory protection implemented by associating 
protection bit with each frame

p Valid-invalid bit attached to each entry in the page 
table:
n “valid” indicates that the associated page is in the 

process’ logical address space, and is thus a legal 
page

n “invalid” indicates that the page is not in the process’ 
logical address space



8.27 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Valid (v) or Invalid (i) Bit In A Page Table



8.28 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Shared Pages

p Shared code
n One copy of read-only (reentrant) code shared 

among processes (i.e., text editors, compilers, 
window systems).

n Shared code must appear in same location in the 
logical address space of all processes

p Private code and data
n Each process keeps a separate copy of the code 

and data
n The pages for the private code and data can appear 

anywhere in the logical address space



8.29 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Shared Pages Example



8.30 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Page Table : 개념

p 페이지테이블공간에대한오버헤드

n Page Table은프로세스당운용
p 페이지 4KB를가지는 32비트어드레스공간의페이지테이블
사이즈는 4MB

n 프로세스당이므로용량이큼

p 오버헤드를줄이는방법

n 실제사용되는주소공간에대해서만맵을할당함.
n 전체공간의일부로 (Fraction) 유지.

p 어떻게사용되는영역에대한맵만유지할수있는가

n 페이지테이블을다이나믹하게확장가능하도록만듦

n Indirection 레벨을통해서 : 2레벨, 하이라키컬, 해시등.



8.31 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Page Table : 종류

p Hierarchical Paging

p Hashed Page Tables

p Inverted Page Tables



8.32 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Page Table : Hierarchical Page Tables

p Break up the logical address space into 
multiple page tables
n 2단계페이지테이블(Two Level Page Scheme)



8.33 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Page Table : Two-Level Paging Example

p A logical address (on 32-bit machine with 1K page size) is divided into:
n a page number consisting of 22 bits
n a page offset consisting of 10 bits

p Since the page table is paged, the page number is further divided into:
n a 12-bit page number 
n a 10-bit page offset

p Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the displacement 
within the page of the outer page table

page number page offset

pi p2 d

12 10 10



8.34 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Page Table : Two-Level Paging Example

• 2단계 페이지 테이블에서 Address-Translation Scheme



8.35 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Page Table : Three-level Paging Scheme



8.36 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Page Table : Hashed Page Tables

p Common in address spaces > 32 bits

p The virtual page number is hashed into a page 
table. This page table contains a chain of 
elements hashing to the same location.

p Virtual page numbers are compared in this chain 
searching for a match. If a match is found, the 
corresponding physical frame is extracted.



8.37 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Page Table : Hashed Page Table



8.38 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Page Table : Inverted Page Table

p 실제메모리의페이지가하나의엔트리가됨.
n 실제메모리페이지인하나의엔트리는 VPN과
프로세스정보가저장되어있음

p 일반적으로 VPN이인덱스가되고그내에매핑된 PPN이기술되는데이는 VPN이
제공하는공간만큼의엔트리가필요페이지테이블이커짐이에반해 IPT는 VPN을
저장하고인덱스가 PPN이되므로실제물리메모리사이즈만큼의엔트리만존재
하면되므로페이지테이블사이즈가매우작음

p 대신에페이지를찾기위해검색시간이들어가고
메모리접근이많아짐.
n 이것을해결하기위해서 Hashed Inverted Page 

Tables을쓰거나 TLB와같은하드웨어도움을받음



8.39 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Inverted Page Table Architecture



8.40 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Segmentation

p 세그멘테이션기법의정의
n Segment 단위로메모리에적재할당하는기법

p A program is a collection of segments.  A segment is a 
logical unit such as:

main program,
procedure, 
function,
method,
object,
local variables, global variables,
common block,
stack,
symbol table, arrays



8.41 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

User’s View of a Program



8.42 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space



8.43 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Segmentation Architecture 

p Logical address consists of a two tuple:
<segment-number, offset>,

p Segment table – maps two-dimensional physical 
addresses; each table entry has:
n base – contains the starting physical address where 

the segments reside in memory
n limit – specifies the length of the segment

p Segment-table base register (STBR) points to the 
segment table’s location in memory

p Segment-table length register (STLR) indicates 
number of segments used by a program;

segment number s is legal if s < STLR



8.44 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Segmentation Hardware



8.45 Silberschatz, Galvin and Gagne ©2007Operating System Concepts  – 7th Edition

Example of Segmentation



Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

End of Chapter 8


