
Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Chapter 6: Process Synchronization

6.2 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Module 6: Process Synchronization

p Background
p The Critical-Section Problem
p Peterson’s Solution
p Synchronization Hardware
p Semaphores
p Classic Problems of Synchronization
p Monitors
p Synchronization Examples
p Atomic Transactions

6.3 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Background

p Concurrent access to shared data may result in data
inconsistency.

p Race condition
n The situation where several processes access and manipulate shared data

concurrently.
n The final value of the shared data
n depends upon which process finishes last.

p To prevent race conditions,
concurrent processes must be synchronized.

프로세스 1
(예:삽입 프로세스)

프로세스 2
(예:삭제 프로세스)

공유 데이터

6.4 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Background : Queue!

p Shared data

#define BUFFER_SIZE 10
typedef struct {

. . .
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;
int counter = 0;

Producer
Process

Consumer
Process

Queue

6.5 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Background : Queue!

p Producer process

item nextProduced;

while (1) {
while (counter == BUFFER_SIZE)

; /* do nothing */
buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
counter++;

}

n Consumer process

item nextConsumed;

while (1) {
while (counter == 0)

; /* do nothing */
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
counter--;

}

Producer
Process

Counter++

Consumer
Process

Counter--

counter

6.6 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Bounded Buffer
p 문제점 :

counter++;
counter--;

Atomic한연산으로보이지만, 실제는
Atomic하지않다!

p Counter++ is Not Atomic!

Atomic operation means
an operation that
completes in its entirety
without interruption.

Execution
Box

1. data

counter
3. 연산

add

2. Load

4. Store

CPU Memory
HDD

Storage
Box

6.7 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Bounded Buffer

p count++ could be implemented as

register1 = count (LOAD R1, COUNT)
register1 = register1 + 1 (ADD R1, 1)
count = register1 (STORE R1, COUNT)

p count-- could be implemented as

register2 = count (LOAD R2, COUNT)
register2 = register2 - 1 (SUB R2, 1)
count = register2 (STORE R2, COUNT)

6.8 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Bounded Buffer : 동시수행!!

Process

S - Box

count

count++

Process

count--

6.9 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Bounded Buffer

p Consider this execution interleaving with “count
= 5” initially:

S0: producer execute register1 = count {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = count {register2 = 5}
S3: consumer execute register2 = register2 - 1 {register2 = 4}
S4: producer execute count = register1 {count = 6 }
S5: consumer execute count = register2 {count = 4}

p The value of count may be either 4 or 6, where the
correct result should be 5.

Counter++ Counter--Counter
5

6.10 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

The Critical-Section Problem(임계구역문제)

p n processes all competing to use some shared
data

p Each process has a code segment, called
critical section, in which the shared data is
accessed.

p Problem – ensure that when one process is
executing in its critical section, no other process
is allowed to execute in its critical section.

6.11 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Critical-Section 문제해결의충족조건
1. Mutual Exclusion. 한프로세스가임계구역을실행중일때,
다른어떤프로세스도임계구역을실행할수없다

2. Progress. 임계구역을실행하는프로세스가없고여러개의
프로세스들이임계구역에들어오고자하는상황에서는, 반드시
하나의프로세스를선택하여진입시키는올바른결정기법이
있어야하고, 이러한결정은무한정미루어져서는안된다.

3. Bounded Waiting.한프로세스가임계구역에대한진입요청
후부터요청의수락까지의기간내에, 다른프로세스가임계
구역을실행할수있는회수에는제한이있어야한다.
— Assume that each process executes at a nonzero speed
— No assumption concerning relative speed of the n

processes.

6.12 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Critical-Section Problem

1. Race Condition - When there is concurrent access to
shared data and the final outcome depends upon order of
execution.

2. Critical Section - Section of code where shared data is
accessed.

3. Entry Section - Code that requests permission to enter
its critical section.

4. Exit Section - Code that is run after exiting the critical
section

6.13 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Structure of a Typical Process

6.14 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Peterson’s Solution

p Two process solution
p Assume that the LOAD and STORE instructions

are atomic; that is, cannot be interrupted.

p The two processes share two variables:
n int turn;
n Boolean flag[n]

p Turn : The variable turn indicates whose turn it
is to enter the critical section.

p Flag : The flag array is used to indicate if a
process is ready to enter the critical section.
flag[i] = true implies that process Pi is ready!

6.15 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Peterson’s Solution

p Combined shared variables of algorithms 1 and 2.
p Process Pi

do {
flag [i]:= true; /* My intention is to enter …. */
turn = j; /* Set to his turn-빠를수록양보 */
while (flag [j] and turn = j) ;/* wait only if …*/

critical section
flag [i] = false;

remainder section
} while (1);

p Problems
n Busy Waiting! (계속 CPU와 memory 를쓰면서 wait)
n Software 적인해결책은느림

6.16 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Critical Section Using Locks

6.17 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Synchronization Hardware

p Many systems provide hardware support for critical
section code

p Uniprocessors – could disable interrupts
n Currently running code would execute without

preemption
n Generally too inefficient on multiprocessor systems

p Operating systems using this not broadly scalable
p Modern machines provide special atomic hardware

instructions
p Atomic = non-interruptible

n Either test memory word and set value
n Or swap contents of two memory words

6.18 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Synchronization Hardware

p Lock에대한 testAndSet를 CPU의명령어로제공 (atomic
instruction)

p Test and modify the content of a word atomically

boolean TestAndSet(boolean *target) {
boolean rv =*target;
*target = true;

return rv;
}

1. Read

2. TRUE

TestAndSet(a)

상호배제(Multual Exclusion)의 구현

6.19 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Mutual Exclusion with Test-and-Set

p Shared data:
boolean lock = false;

p Process Pi

do {
while (TestAndSet(&lock)) ;

critical section
lock = false;

remainder section
}

T

F

lock? noop

while(cond) do { };

상호배제(Multual Exclusion)의 구현

6.20 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Synchronization Hardware : Swap 이용

p Atomically swap two variables.
n swap 명령은 CPU에서지원할경우가많음

void Swap(boolean *a, boolean *b) {
boolean temp = *a;
*a = *b;
*b = temp;

}

상호배제(Multual Exclusion)의 구현

6.21 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Mutual Exclusion with Swap

p Shared data (initialized to false):
boolean lock = false ;
boolean waiting[n];

p Process Pi
do {

key = true; /* My intention */
while (key == true)

Swap(&lock,&key);

critical section

lock = false;
remainder section

} while(true);

상호배제(Multual Exclusion)의 구현

bounded waiting
문제는어떻게해결?

6.22 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

상호배제와한정된대기조건을만족하는 lock
repeat

waiting[i] := true;

key := true;

while waiting[i] and key do

key := Test-and-Set(lock);

waiting[i] := false;

// 임계구역

j := i+1 mod n;

while (j ¹ i) and (not waiting[j]) do

j := j+1 mod n;

if j = i then lock := false

else waiting[j] := false;

잔류구역

until false;

다른프로세스가요청후기
다리고있는지차례로검사

요청후기다리고있는프로세스가하나도없으면...

만약있다면, lock을풀지않은채로
대기중인프로세스를 임계구역으
로진입시킴

process의 순서대로 lock을 줌

상호배제(Multual Exclusion)+한정된 대기(Bounded Waiting)

6.23 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Semaphores

p 소프트웨어해결및 Test-and-Set 등은모두 “busy
waiting” 알고리즘

p 임계구역진입시이미다른프로세스가진입해있으면
busy-waiting loop 실행 -> 타임슬라이스낭비

p 세마포어 (Dijkstra) : block/wakeup 알고리즘
n 진입불가능시에는대기상태로전환

n 임계구역을진출하는프로세스가대기프로세스를준비상태로깨워줌

6.24 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Semaphores

p Synchronization tool that does not require busy waiting.
p Semaphore S – integer variable
p can only be accessed via two indivisible (atomic)

operations
wait (S):

while S£ 0 do no-op;
S--;

signal (S):
S++;

6.25 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Critical Section of n Processes

p Shared data:
semaphore mutex; //initially mutex = 1

p Process Pi:

do {
wait(mutex);

critical section

signal(mutex);

remainder section
} while (1);

6.26 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Semaphores 사용예

Semaphore Printer;
init(Printer, 3);

:

wait (Printer);

use a printer;

signal (Printer);

remainder section;

6.27 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Semaphore Implementation

p Define a semaphore as a record
typedef struct {

int value;
struct process *L;

} semaphore;

p Assume two simple operations:
n block kernel suspends the process that invoked P(S) itself.

Put this process’ PCB into wait queue (semaphore)
n wakeup(P) V(S) resumes the execution of a blocked process P.

(Put this process’ PCB into ready queue)

value: 0

PCB PCB PCB

struct
semaphore S :

L

6.28 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Implementation

p Semaphore operations now defined as
wait(semaphore *S):

S->value--;
if (S->value < 0) {

add this process to S->L;
block();

}

signal(semapore *S):
S->value++;
if (S->value <= 0) {

remove a process P from S->L;
wakeup(P);

}

6.29 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Semaphore in Java

p Java SE5, SE6에서기본지원
n url :

http://java.sun.com/javase/6/docs/api/java/util/concurr
ent/Semaphore.html

6.30 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Semaphore in Java : example

6.31 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Semaphore in Java : example

6.32 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Semaphore as a General Synchronization Tool
프로세스 Sync를위해 Semaphore 사용하기

p Execute B in Pj only after A executed in Pi

p Use semaphore flag initialized to 0
p Code:

Pi Pj

M M

A wait(flag)
signal(flag) B

6.33 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Deadlock and Starvation

p Deadlock – two or more processes are waiting indefinitely for an event that
can be caused by only one of the waiting processes.

p Let S and Q be two semaphores initialized to 1
P0 P1

wait(S); wait(Q);
wait(Q); wait(S);

M M

signal(S); signal(Q);
signal(Q) signal(S);

p Starvation – indefinite blocking. A process may never be removed from
the semaphore queue in which it is suspended.

6.34 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Two Types of Semaphores

p Counting semaphore – integer value can
range over an unrestricted domain.

p Binary semaphore – integer value can range
only between 0 and 1; can be simpler to
implement.

p Can implement a counting semaphore S as a
binary semaphore.

6.35 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Classical Problems of Synchronization

p Bounded-Buffer Problem

p Readers and Writers Problem

p Dining-Philosophers Problem

6.36 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Bounded-Buffer Problem

Producer
in

Buffer
In

shared
memory

Consumer
out

Any empty buf?
Fill it

Produce full buf

Any full buf exist?
Get it

Produce empty buf

Shared variable: buf, count ==> Need binary semaphore

Resource count: # of full buf ==> Need integer semaphore
of empty buf

Can I access
shared variable now? Can I access

shared variable now?

If yes, but ... If yes, but ...

New data arrived

Nfull-buf

Nempty-buf

6.37 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Bounded-Buffer Problem

p Shared data

semaphore full, empty, mutex;

Initially:

full = 0, empty = n, mutex = 1

6.38 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Bounded-Buffer Problem Producer Process

do {
…

produce an item in nextp
…

wait(empty);
wait(mutex);

…
add nextp to buffer

…
signal(mutex);
signal(full);

} while (1);

6.39 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Bounded-Buffer Problem Consumer Process

do {
wait(full)
wait(mutex);

…
remove an item from buffer to nextc

…
signal(mutex);
signal(empty);

…
consume the item in nextc

…
} while (1);

6.40 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Bounded-Buffer : Java 구현예

6.41 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Bounded-Buffer : Java 구현예

insert() Method

6.42 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Bounded-Buffer : Java 구현예

remove() Method

6.43 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Bounded-Buffer : Java 구현예

p The structure of the producer process

6.44 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Bounded-Buffer : Java 구현예

p The structure of the consumer process

6.45 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Bounded-Buffer : Java 구현예

p The Factory

6.46 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Readers-Writers Problem

p Shared data

semaphore mutex, wrt;

Initially

mutex = 1, wrt = 1, readcount = 0

6.47 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Readers-Writers Problem Writer Process

wait(wrt);
…

writing is performed
…

signal(wrt);

6.48 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Readers-Writers Problem Reader Process

wait(mutex);
readcount++;
if (readcount == 1)

wait(wrt);
signal(mutex);

…
reading is performed

…
wait(mutex);
readcount--;
if (readcount == 0)

signal(wrt);
signal(mutex):

W DB
(db)

R

R

R

readcount
(mutex)

다른 프로세스가 쓰는 중이면
기다림

읽기 카운트를
증가 시키는중에
다른 프로세스가
Readcount를 증가시키지
못하도록 함

6.49 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Readers-Writers Problem : Java 구현예

Interface for read-write locks

6.50 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Readers-Writers Problem : Java 구현예

Methods called by writers.

6.51 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Readers-Writers Problem : Java 구현예

p The structure of a writer process

6.52 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Readers-Writers Problem : Java 구현예

p The structure of a reader process

6.53 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Dining-Philosophers Problem

p Shared data
semaphore chopstick[5];

Initially all values are 1

6.54 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Dining-Philosophers Problem

p Philosopher i:
do {

wait(chopstick[i])
wait(chopstick[(i+1) % 5])

…
eat
…

signal(chopstick[i]);
signal(chopstick[(i+1) % 5]);

…
think
…

} while (1);

왼쪽 숫가락과
오른쪽 숫가락을
모두 확보하면
Critical section In!

왼쪽 숫가락과
오른쪽 숫가락을
모두 반납!

6.55 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Semaphores의문제점

n Difficult to code
n Difficult to prove correctness

** errors are not reproducible
** error are observed rarely

n Requires voluntary cooperation
n Single misuse affect entire system

6.56 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Critical Regions

p High-level synchronization construct
p A shared variable v of type T, is declared as:

v: shared T
p Variable v accessed only inside statement

region v when B do S

where B is a boolean expression.

p While statement S is being executed, no other process
can access variable v.

6.57 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Critical Regions

p Regions referring to the same shared variable exclude
each other in time.

p When a process tries to execute the region statement,
the Boolean expression B is evaluated. If B is true,
statement S is executed. If it is false, the process is
delayed until B becomes true and no other process is in
the region associated with v.

6.58 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Example – Bounded Buffer

p Shared data:

struct buffer {
int pool[n];
int count, in, out;

}

6.59 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Bounded Buffer Producer Process

p Producer process inserts nextp into the shared buffer

region buffer when(count < n) {
pool[in] = nextp;
in:= (in+1) % n;
count++;

}

6.60 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Bounded Buffer Consumer Process

p Consumer process removes an item from the shared
buffer and puts it in nextc

region buffer when (count > 0) {
nextc = pool[out];
out = (out+1) % n;
count--;

}

6.61 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Implementation region x when B do S

p Associate with the shared variable x, the following
variables:
semaphore mutex, first-delay, second-delay;

int first-count, second-count;

p Mutually exclusive access to the critical section is
provided by mutex.

p If a process cannot enter the critical section because the
Boolean expression B is false, it initially waits on the
first-delay semaphore; moved to the second-delay
semaphore before it is allowed to reevaluate B.

6.62 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Implementation

p Keep track of the number of processes waiting on first-
delay and second-delay, with first-count and second-
count respectively.

p The algorithm assumes a FIFO ordering in the queuing
of processes for a semaphore.

p For an arbitrary queuing discipline, a more complicated
implementation is required.

6.63 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Monitors
p High-level synchronization construct that allows the safe sharing

of an abstract data type among concurrent processes.

monitor monitor-name
{

shared variable declarations
procedure body P1 (…) {

. . .
}
procedure body P2 (…) {

. . .
}
procedure body Pn (…) {

. . .
}
{

initialization code
}

}

6.64 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Monitors

p To allow a process to wait within the monitor,
a condition variable must be declared, as

condition x, y;
p Condition variable can only be used with the

operations wait and signal.
n The operation

x.wait();
means that the process invoking this operation is
suspended until another process invokes

x.signal();
n The x.signal operation resumes exactly one suspended

process. If no process is suspended, then the signal
operation has no effect.

6.65 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Schematic View of a Monitor

6.66 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Monitor With Condition Variables

6.67 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Dining Philosophers Example
monitor dp
{

enum {thinking, hungry, eating} state[5];
condition self[5];
void pickup(int i) // following slides
void putdown(int i) // following slides
void test(int i) // following slides
void init() {

for (int i = 0; i < 5; i++)
state[i] = thinking;

}
}

6.68 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Dining Philosophers
void pickup(int i) {

state[i] = hungry;
test[i];
if (state[i] != eating)

self[i].wait();
}

void putdown(int i) {
state[i] = thinking;
// test left and right neighbors
test((i+4) % 5);
test((i+1) % 5);

}

6.69 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Dining Philosophers
void test(int i) {

if ((state[(I + 4) % 5] != eating) &&
(state[i] == hungry) &&
(state[(i + 1) % 5] != eating)) {

state[i] = eating;
self[i].signal();

}
}

6.70 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Monitor Implementation Using Semaphores
p Variables

semaphore mutex; // (initially = 1)
semaphore next; // (initially = 0)
int next-count = 0;

p Each external procedure F will be replaced by
wait(mutex);

…
body of F;

…
if (next-count > 0)

signal(next)
else

signal(mutex);

p Mutual exclusion within a monitor is ensured.

6.71 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Monitor Implementation

p For each condition variable x, we have:
semaphore x-sem; // (initially = 0)
int x-count = 0;

p The operation x.wait can be implemented as:

x-count++;
if (next-count > 0)

signal(next);
else

signal(mutex);
wait(x-sem);
x-count--;

6.72 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Monitor Implementation

p The operation x.signal can be implemented as:

if (x-count > 0) {
next-count++;
signal(x-sem);
wait(next);
next-count--;

}

6.73 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Monitor Implementation
p Conditional-wait construct: x.wait(c);

n c – integer expression evaluated when the wait operation is
executed.

n value of c (a priority number) stored with the name of the
process that is suspended.

n when x.signal is executed, process with smallest
associated priority number is resumed next.

p Check two conditions to establish correctness
of system:
n User processes must always make their calls on the monitor

in a correct sequence.
n Must ensure that an uncooperative process does not ignore

the mutual-exclusion gateway provided by the monitor, and
try to access the shared resource directly, without using the
access protocols.

6.74 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Java 5.0 Synchronization
public class SyncTest {
List<String> values = new ArrayList<String>();

public void test() {
Thread writeThread = new Thread() {

public void run() {
while(true) {
for(int i = 0; i < 10; i++) {
add("Val" + i);

}
try {

Thread.sleep(50);
} catch (InterruptedException e) {
}

}
}

};

Thread readThread = new Thread() {
public void run() {

while(true) {
print();
try {

Thread.sleep(100);
} catch (InterruptedException e) {

e.printStackTrace();
}

}
}

};

writeThread.start();
readThread.start();

}

public void add(String value) {
values.add(value);

}

public void print() {
for(String value: values) {

System.out.println(value);
}

}

public static void main(String[] args) {
(new SyncTest()).test();

}
}

공유 데이터

공유 데이터를
이용하는 쓰레드

Synchronized 를 사용하지
않을 경우 문제를 발생시키는 예

6.75 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Java 5.0 Synchronization

p Synchronized를이용한동기화

n Synchronized를이용하여메소드를배타적으로수행함
n 배타적으로수행하므로 Once Write Many Read 의경우성능에영향을
미칠수있음

public synchronized void add(String value) {
values.add(value);

}

public synchronized void print() {
for(String value: values) {

System.out.println(value);
}

}

6.76 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Java 5.0 Synchronization

p ReadWriteLock을이용한 Synchronization
List<String> values = new ArrayList<String>();
final ReentrantReadWriteLock lock = new ReentrantReadWriteLock();

public void add(String value) {
lock.writeLock().lock();
try {
values.add(value);

} finally {
lock.writeLock().unlock();

}
}

public void print() {
lock.readLock().lock();
try {
for(String value: values) {

System.out.println(value);
}

} finally {
lock.readLock().unlock();

}
}

Deadlock의 문제점 내포

6.77 Silberschatz, Galvin and Gagne ©2007Operating System Concepts – 7th Edition

Java 5.0 Synchronization

p ReadWriteLock에서 Deadlock의회피
n 일정시간동안 lock을얻지못하면 Exception 발생

public void print() {
try {
if(lock.readLock().tryLock(100, TimeUnit.MILLISECONDS)) {

try {
for(String value: values) {

System.out.println(value);
}

} finally {
lock.readLock().unlock();

}
} else {

System.out.println("Lock Timeout");
}

} catch (InterruptedException e) {
e.printStackTrace();

}
}

