Chapter 6: Process Synchronization

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 Silberschatz, Galvin and Gagne ©2007

Module 6: Process Synchronization

Background

The Critical-Section Problem
Peterson’s Solution

Synchronization Hardware
Semaphores

Classic Problems of Synchronization
Monitors

Synchronization Examples

O Atomic Transactions

OOoOoo0oooaQo

Operating System Concepts — 7th Edition 6.2 Silberschatz, Galvin and Gagne ©2007

Background

O Concurrent access to shared data may result in data
inconsistency.

0 Race condition

m The situation where several processes access and manipulate shared data
concurrently.

m The final value of the shared data
m depends upon which process finishes last.

O To prevent race conditions,

Operating System Concepts — 7th Edition 6.3 Silberschatz, Galvin and Gagne ©2007

Background : Queue!

O Shared data

#define BUFFER_SIZE 10
typedef struct {

} item;

item buffer[BUFFER_SIZE];
intin = 0;

int out = 0;

int counter = 0;

. 22
Operating System Concepts — 7th Edition 6.4 Silberschatz, Galvin and Gagne ©2007

Background : Queue!

m Consumer process
O Producer process

item nextConsumed;
item nextProduced;

while (1) {
while (1) { while (counter == 0)

while (counter == BUFFER_SIZE) ; /* do nothing */
; I* do nothing */ nextConsumed = buffer[out];

t = (out + 1) % BUFFER_SIZE;
buffer[in] = nextProduced; out = (ou) % _

counter--;
in = (in + 1) % BUFFER_SIZE; 3}
counter++;

al

o . 3 4 .
Operating System Concepts — 7t Edition . Silberschatz, Galvin and Gagne ©2007

Bounded Buffer

o= M&E
counter++;
counter--;

Atomicol Al & CH

O Counter++ is Not Atomic!

Execution

Atomic operation means
an operation that
completes in its entirety
without interruption.

Atomicst H Ao 2 B0 X8t A=

Storage
 Box

Operating System Concepts — 7t Edition 6.6

1. data

counter

Memory
HDD

Silberschatz, Galvin and Gagne ©2007

Bounded Buffer

O count++ could be implemented as

register1 = count (LOAD R1, COUNT)
register1 = register1 + 1 (ADD R1, 1)
count = register1 (STORE R1, COUNT)

O count-- could be implemented as

register2 = count (LOAD R2, COUNT)
register2 = register2 - 1 (SUB R2,1)
count = register2 (STORE R2, COUNT)

Q
¢

Operating System Concepts — 7th Edition 6.7 Silberschatz, Galvin and Gagne ©2007

Bounded Buffer : S A| =311

Process Process

S - Box

count

i e

Bounded Buffer

O Consider this execution interleaving with “count
= 5" initially:

SO0:
S1:
S2.
S3:
S4.
S5:

producer execute register1 = count {register1 = 5}
producer execute register1 = register1 + 1 {register1 = 6}
consumer execute register2 = count {register2 = 5}
consumer execute register2 = register2 -1 {register2 = 4}
producer execute count = register1 {count=26}
consumer execute count = register2 {count =4}

Counter'l"ﬁ\@‘f Counter-+

O The value of count may be either 4 or 6, where the

correct result should be 5.

Operating System Concepts — 7th Edition 6.9 Silberschatz, Galvin and Gagne ©2007

The Critical-Section Problem(& H 2= 2 Al)

O n processes all competing to use some shared
data

O Each process has a code segment, called
critical section, in which the shared data is
accessed.

O Problem — ensure that when one process is
executing in its critical section, no other process
IS allowed to execute in its critical section.

Operating System Concepts — 7th Edition 6.10 Silberschatz, Galvin and Gagne ©2007

1. Mutual Exclusion. st ZZ H|AJF 2 H 2SS = Al S [,
OE HH IS HAE H 29SS Alsgr &= QI

2. Progress. 2 H 9= &dlote 2 AADESI LD K JH_O-I
T2 NASO| O'ﬁl AN =HLLLD X o= é*%OHA =, BFC A
otLISl T2 HIAE MG Y AIJ|= SHIE 2 & DIU*OI

U0 OF o 12, O|81._ 232 Fd UIFHAME e =L

3. Bounded Waiting. et L2 AAJF 2 H S0 Uet MY LE
S2H Q2 =FIHA2] J12F WGl CHE Z=2 A4 2 A
AAS adg = U= 20=0= Mol JAUO0I0F St
® Assume that each process executes at a nonzero speed

® No assumption concerning relative speed of the n
processes.

Operating System Concepts — 7th Edition 6.11 Silberschatz, Galvin and Gagne ©2007

Critical-Section Problem

1. Race Condition - When there is concurrent access to
shared data and the final outcome depends upon order of
execution.

2. Critical Section - Section of code where shared data is
accessed.

3. Entry Section - Code that requests permission to enter
its critical section.

4. Exit Section - Code that is run after exiting the critical
section

L = ;‘ .‘“ .VV
Operating System Concepts — 7th Edition 6.12 Silberschatz, Galvin and Gagne ©2007

Structure of a Typical Process

while (true) {

entry section

critical section

exit section

remainder section

A -
b ;)

Operating System Concepts — 7th Edition 6.13 Silberschatz, Galvin and Gagne ©2007

Peterson’s Solution

O Two process solution

O Assume that the LOAD and STORE instructions
are atomic; that is, cannot be interrupted.

O The two processes share two variables:
m Int turn;
= Boolean flag[n]

O Turn: The variable turn indicates whose turn it
IS to enter the critical section.

O Flag : The flag array is used to indicate if a

process is ready to enter the critical section.
%QL?QU] = true implies that process P, is ready!
N e }x

Operating System Concepts — 7th Edition 6.14 Silberschatz, Galvin and Gagne ©2007

Peterson’s Solution

0 Combined shared variables of algorithms 1 and 2.
O Process P,
do {
flag [i]:= true; /* My intention is to enter */
turn = j; /* Set to his turn-tiiE+5 22 */
while (flag [j] and turn =j) ;/* wait only if ...*/
critical section
flag [i] = false;
remainder section
} while (1);

O Problems
= Busy Waiting! (4= CPUSZ} memory £ M5 A/ wait)

m Software X9/ ofZEH = &

Operating System Concepts — 7th Edition 6.15 Silberschatz, Galvin and Gagne ©2007

Critical Section Using Locks

b,

Operating System Concepts — 7t Edition

while (true) {

acquire lock

critical section

release lock

remainder section

6.16

. ‘ ‘_J.! =
Silberschatz, Galvin and Gagne ©2007

Synchronization Hardware

O Many systems provide hardware support for critical
section code

O Uniprocessors — could disable interrupts

= Currently running code would execute without
preemption

= Generally too inefficient on multiprocessor systems
Operating systems using this not broadly scalable

O Modern machines provide special atomic hardware
instructions

Atomic = non-interruptible
= Either test memory word and set value
= Or swap contents of two memory words

Operating System Concepts — 7th Edition 6.17 Silberschatz, Galvin and Gagne ©2007

Synchronization Hardware

At S B Ml (Multual Exclusion)2| /2 &

O LockOil CHSt testAndSetE CPUS| HE & M= (atomic
instruction)

O Test and modify the content of a word atomically

boolean TestAndSet(boolean *target) {
boolean rv =*target;

*target = true; TestAndSet(a)
1. Read
return rv; ™S
Pl
2. TRUE |

Operating System Concepts — 7th Edition 6.18 Silberschatz, Galvin and Gagne ©2007

Mutual Exclusion with Test-and-Set

A S B Ml (Multual Exclusion)2| /2 &

O Shared data:
boolean lock = false;

O Process P,
do {
while (TestAndSet(&lock)) ;
critical section
lock = false;
remainder section

while(cond) do { };
e

Operating System Concepts — 7th Edition 6.19 iilberschatz, Galvin and Gagne ©2007

Synchronization Hardware : Swap 0| &
A S B Ml (Multual Exclusion)2| /2 &

0 Atomically swap two variables.
m swap HE 2 CPUNA A[ES BRI ES

0

void Swap(boolean *a, boolean *b) {
boolean temp = *a;
*3 = *b:
*b = temp;

Operating System Concepts — 7th Edition 6.20 Silberschatz, Galvin and Gagne ©2007

Mutual Exclusion with Swap

A S B Ml (Multual Exclusion)2| /2 &

O Shared data (initialized to false):
boolean lock = false ;

boolean waiting[n];

O Process P,
do {
key = true; /* My intention */
while (key == true)
Swap(&lock,&key);

critical section

bounded waiting

lock = false; SRS O] HZ?

remainder section
} while(true);

. .\ - ;= .‘" .77
Operating System Concepts — 7th Edition 6.21 Silberschatz, Galvin and Gagne ©2007

ASHI M2 8t E HIIXAH= BHEGH= lock
A S HIEAI(Multual Exclusion)+8t& & 0 J|(Bounded Waiting)
repeat
waitingl[i] := true;

key := true;

O

while waiting[i] and key do process2| =AN[HZ lockS
key := Test-and-Set(lock);
waiting[i] := false;
IS H 4

L : ChE Z2AAIRE Z= D
= i+1 d
= modn, CHelD YEX Rz 2 A
while (j # i) and (not waiting[j]) do
j == j+1 mod n;
if j = i then lock := false S ZJ|0Uell] U= ZZHAIGHLIE 1o,

else waiting(j] := false; ‘

hl, TF 7O

Operating System Concepts — 7th Edition

Semaphores

O A2ZTERN oHZ L Test-and-Set s =2 25 “busy
waiting” &€ 112l S

SH 2E AL A OO0 THE 2 MAIJF Mol /[0
busy-waiting loop &/ & -> Bt =210 A]

o NI O O] (Dijkstra) : block/wakeup & 12| S
s N EIHs AlOlE)| M2 ®E
YUY RS FEGE TRANAI U ZEHAS FH| AHE WAS

Operating System Concepts — 7th Edition 6.23 Silberschatz, Galvin and Gagne ©2007

Semaphores

O Synchronization tool that does not require busy waiting.
O Semaphore S — integer variable

O can only be accessed via two indivisible (atomic)
operations

wait (S):
while S< 0 do no-op;
S--;

signal (S):
S++;

Operating System Concepts — 7th Edition 6.24 Silberschatz, Galvin and Gagne ©2007

Critical Section of n Processes

O Shared data:
semaphore mutex; //initially mutex = 1

O Process Pi:

do {
wait(mutex);

critical section

signhal(mutex);

remainder section
} while (1);

Operating System Concepts — 7th Edition 6.25 Silberschatz, Galvin and Gagne ©2007

Semaphores AIZ 0

Semaphore Printer;
init(Printer, 3);

remainder section;

P, 3,

Operating System Concepts — 7th Edition 6.26 Silberschatz, Galvin and Gagne ©2007

Semaphore Implementation

o Define a semaphore as a record
typedef struct {

int value;
struct process *L;
} semaphore;

O Assume two simple operations:
= block kernel suspends the process that invoked P(S) itself.
Put this process’ PCB into wait queue (semaphore)
= wakeup(P) V(S)resumes the execution of a blocked process P.
(Put this process’ PCB into ready queue)

struct
semaphore S|ya1ue: 0

L

| PCB |— PCB —| PCB

. .\ A ;;. 3\
Operating System Concepts — 7th Edition 6.27 Silberschatz, Galvin and Gagne ©2007

Implementation

O Semaphore operations now defined as
wait(semaphore *S):
S->value--;
if (S->value < 0) {

add this process to S->L;
block();

}

signal(semapore *S):
S->value++;
if (S->value <=0) {
remove a process P from S->L;
wakeup(P);

L = ;‘ .‘“ .VV
Operating System Concepts — 7th Edition 6.28 Silberschatz, Galvin and Gagne ©2007

Semaphore in Java

o Java SE5, SEGUHI A J|l= K&

= url:
http://java.sun.com/javase/6/docs/api/java/util/concurr
ent/Semaphore.html

Semaphore S = new Semaphore();
S.acquire();

// critical section
S.release();

// remainder section

Operating System Concepts — 7th Edition 6.29 Silberschatz, Galvin and Gagne ©2007

Semaphore in Java : example

public class Worker implements Runnable
{

private Semaphore sem;

private String name;

public Worker(Semaphore sem, String name) {
this.sem = sem;
this.name = name;

}

public void run() {
while (true) {
sem.acquire() ;
MutualExclusionUtilities.criticalSection(name);
sem.release() ;
MutualExclusionUtilities.remainderSection(name) ;

}
}

- 3 ‘ <
Operating System Concepts — 7th Edition 6.30 Silberschatz, Galvin and Gagne ©2007

Semaphore in Java : example

public class SemaphoreFactory

{

public static void main(String args[]) {
Semaphore sem = new Semaphore(1);
Thread[] bees = new Thread[5];

for (int 1 = 0; i < b; i++)
bees[i] = new Thread(new Worker
(sem, "Worker " + (new Integer(i)).toString()));

for (int i = 0; i < 5; i++)
bees[i] .start();

. . _‘ ~
Silberschatz, Galvin and Gagne ©2007

Operating System Concepts — 7t Edition 6.31

Semaphore as a General Synchronization Tool

I Z N A SyncE ¢Iol Semaphore AHEGL]

0 Execute Bin P; only after A executed in P,
O Use semaphore flag initialized to O

O Code:
P. P,
A /Waitzflag)
signal(flag) B

adP o
6.32 Silberschatz, Galvin and Gagne ©2007

Operating System Concepts — 7t Edition

Deadlock and Starvation

0 Deadlock — two or more processes are waiting indefinitely for an event that
can be caused by only one of the waiting processes.

O Let Sand Q be two semaphores initialized to 1

P, P,
wait(S); wait(Q);
wait(Q); wait(S);

signal(S); signal(Q);
signal(Q) signal(S);

O Starvation — indefinite blocking. A process may never be removed from
the semaphore queue in which it is suspended.

Operating System Concepts — 7th Edition 6.33 Silberschatz, Galvin and Gagne ©2007

Two Types of Semaphores

O Counting semaphore — integer value can
range over an unrestricted domain.

O Binary semaphore — integer value can range
only between 0 and 1; can be simpler to
Implement.

O Can implement a counting semaphore S as a
binary semaphore.

Operating System Concepts — 7th Edition 6.34 Silberschatz, Galvin and Gagne ©2007

Classical Problems of Synchronization

0 Bounded-Buffer Problem
0 Readers and Writers Problem

0 Dining-Philosophers Problem

Operating System Concepts — 7th Edition 6.35 Silberschatz, Galvin and Gagne ©2007

Bounded-Buffer Problem

ew data arrived

I\Iempty-buf
Shared variable: buf, count ==> Need binary semaph
Resource count: # of full buf ==> Need integer semapt
of empty buf A

Operating System Concepts — 7th Edition 6.36 Silberschatz, Galvin and Gagne ©2007

Bounded-Buffer Problem

O Shared data
semaphore full, empty, mutex;
Initially:

full = 0, empty = n, mutex =1

; L
Operating System Concepts — 7th Edition 6.37 Silberschatz, Galvin and Gagne ©2007

Bounded-Buffer Problem Producer Process

do {
produce an item in nextp

wait(empty);
wait(mutex);

add nextp to buffer
signhal(mutex);

signal(full);
} while (1);

‘ : = 4 K
Operating System Concepts — 7th Edition 6.38 Silberschatz, Galvin and Gagne ©2007

Bounded-Buffer Problem Consumer Process

do {
wait(full)
wait(mutex);

remove an item from buffer to nextc

signhal(mutex);
signhal(empty);

consume the item in nextc

}while.(.'l.);

A : = 4 K
Operating System Concepts — 7th Edition 6.39 Silberschatz, Galvin and Gagne ©2007

Bounded-Buffer : Java =& 0

public class BoundedBuffer implements Buffer
{

private static final int BUFFERSIZE = 5;

private Object[] buffer;

private int in, out;

private Semaphore mutex;

private Semaphore empty;

private Semaphore full;

public BoundedBuffer() {
// buffer is initially empty
in = 0;
out = 0;
buffer

-

new Object [BUFFER_SIZE];

mutex = new Semaphore(1);
empty = new Semaphore(BUFFER_SIZE);
full = new Semaphore(0);

}

public void insert(Object item) {
// Figure 6.9
}

public Object remove() {
// Figure 6.10
}

. y o -
Silberschatz, Galvin and Gagne ©2007

Operating System Concepts — 7t Edition 6.40

Bounded-Buffer : Java =& (|

insert() Method

public void insert(Object item) {
empty.acgquire();
mutex.acquire();

// add an item to the buffer

buffer[in] = item;
in = (in + 1) % BUFFER_SIZE;

mutex.release();
full.release();

. ' o
Silberschatz, Galvin and Gagne ©2007

Operating System Concepts — 7t Edition 6.41

Bounded-Buffer : Java =& (|

remove() Method

public Object remove() {
full.acquire();
mutex.acquire() ;

// remove an item from the buffer
Object item = buffer[out];
out = (out + 1) % BUFFER.SIZE;

mutex.release() ;
empty.release() ;

return item;

5 - > 'V'J h
Operating System Concepts — 7th Edition 6.42 Silberschatz, Galvin and Gagne ©2007

Bounded-Buffer : Java =& 0

O The structure of the producer process

public class Producer implements Runnable

{

private Buffer buffer;

public Producer(Buffer buffer) {
this.buffer = buffer;
}

public void run() {
Date message;

while (true) {
// nap for awhile
SleepUtilities.nap();
// produce an item & enter it into the buffer
message = new Date();
buffer.insert (message);

' e
6.43 Silberschatz, Galvin and Gagne ©2007

Operating System Concepts — 7t Edition

Bounded-Buffer : Java =& 0

O The structure of the consumer process

public class Consumer implements Runnable

{

private Buffer buffer;

public Consumer(Buffer buffer) {
this.buffer = buffer;

}

public void run() {
Date message;

while (true) {
// nap for awhile
SleepUtilities.nap();
// consume an item from the buffer
message = (Date)buffer.remove();

}
}
}

ﬂ _ 5 Ak
Operating System Concepts — 7th Edition 6.44 Silberschatz, Galvin and Gagne ©2007

Bounded-Buffer : Java =& 0

O The Factory

public class Factory

{
public static void main(String args[]) {
Buffer buffer = new BoundedBuffer();
// now create the producer and consumer threads
Thread producer = new Thread(new Producer (buffer));
Thread consumer = new Thread(new Consumer (buffer));
producer.start () ;
consumer.start () ;
}
}

Operating System Concepts — 7th Edition 6.45 Silberschatz, Galvin and Gagne ©2007

Readers-Writers Problem

0 Shared data
semaphore mutex, wrt;
Initially

mutex =1, wrt =1, readcount =0

Operating System Concepts — 7th Edition 6.46 Silberschatz, Galvin and Gagne ©2007

Readers-Writers Problem Writer Process

wait(wrt);
writing is performed

signal(wrt);

& 7 i s
Operating System Concepts — 7th Edition 6.47 Silberschatz, Galvin and Gagne ©2007

Readers-Writers Problem Reader Process

DB |—R ... readcount

(db)\ .~ (mutex)
wait(mutex); R
readcount++;
if (readcount =1)

: DIEP%
. S|gnal(mutex),
S| II=2EE
St AlZI=S0 reading is performed
CtE MEHIAJ}
ReadcountE SJtAIZIAl wait(mutex);
TotEE &

readcount--;

if (readcount == 0)
signal(wrt);

signhal(mutex):

Operating System Concepts — 7th Edition 6.48 Silberschatz, Galvin and Gagne ©2007

Readers-Writers Problem : Java -+ &

Odl

Interface for read-write locks

public interface RWLock

{
public abstract void acquireReadLock();
public abstract void acquireWriteLock();
public abstract void releaseReadLock();
public abstract void releaseWriteLock();

‘ - Ny <
Operating System Concepts — 7th Edition 6.49 Silberschatz, Galvin and Gagne ©2007

Readers-Writers Problem : Java /=& 0|

Methods called by writers.

public void acquireWriteLock() {

db.acquire();
public void releaseWriteLock() {
db.release();
Operating System Concepts — 7th Edition 6.50 Silberschatz, Galvin and Gagne ©2007

Readers-Writers Problem : Java =& 0

O The structure of a writer process

public class Writer implements Runnable

{

private RWLock db;

public Writer(RWLock db) {
this.db = db;

}

public void run() {
while (true) {
// nap for awhile
SleepUtilities.nap() ;

db.acquireWriteLock();

// you have access to write to the database
SleepUtilities.nap();

db.releaseWriteLock();

- 3 “ L
Operating System Concepts — 7th Edition 6.51 Silberschatz, Galvin and Gagne ©2007

Readers-Writers Problem : Java =& 0

O The structure of a reader process

public class Reader implements Runnable

{

private RWLock db;

public Reader (RWLock db) {
this.db = db;

}

public void run() {
while (true) {
// nap for awhile
SleepUtilities.nap();

db.acquireReadLock() ;

// you have access to read from the database
SleepUtilities.nap();

db.releaseReadLock();

‘ - 3 “ L
Operating System Concepts — 7th Edition 6.52 Silberschatz, Galvin and Gagne ©2007

Dining-Philosophers Problem

0 Shared data
semaphore chopstick|[5];
titially all values are 1

el o

" o é ;= .‘" .VV =
Operating System Concepts — 7th Edition 6.53 Silberschatz, Galvin and Gagne ©2007

Dining-Philosophers Problem

o Philosopher i eSS
do { — ee= s

D= sty 50

4T =/

Critical section In!

wait(chopstick[i])
wait(chopstick[(i+1) % 5])

eat
signal(chopstick[i]); < 2 & It
signal(chopstick[(i+1) % 5]);«— KRXEF IIHES
O = dpLk)
'y 4T o -g.
think
} while (1);
Operating System Concepts — 7th Edition 6.54 Silberschatz, Galvin and Gagne ©2007

Semaphores2 =M &

m Difficult to
m Difficult to

= Requires
= Single misuse

Operating System Concepts — 7t Edition

code
prove correctness
** errors are not reproducible
** error are observed rarely
voluntary cooperation
affect entire system

6.55 Silberschatz, Galvin and Gagne ©2007

Critical Regions

0 High-level synchronization construct
O A shared variable v of type T, is declared as:
v:shared T
O Variable v accessed only inside statement
regionvwhen B do S

where B is a boolean expression.

O While statement S is being executed, no other process
can access variable v.

Operating System Concepts — 7th Edition 6.56 Silberschatz, Galvin and Gagne ©2007

Critical Regions

O Regions referring to the same shared variable exclude
each other in time.

0 When a process tries to execute the region statement,
the Boolean expression B is evaluated. If B is true,
statement S is executed. If it is false, the process is
delayed until B becomes true and no other process is in
the region associated with v.

Operating System Concepts — 7th Edition 6.57 Silberschatz, Galvin and Gagne ©2007

Example — Bounded Buffer

0 Shared data:

struct buffer {
int pool[n];
int count, in, out;

Operating System Concepts — 7th Edition 6.58 Silberschatz, Galvin and Gagne ©2007

Bounded Buffer Producer Process

O Producer process inserts nextp into the shared buffer

Operating System Concepts — 7t Edition

region buffer when(count < n) {
pool[in] = nextp;
in:= (in+1) % n;
count++;

6.59 Silberschatz, Galvin and Gagne ©2007

Bounded Buffer Consumer Process

O Consumer process removes an item from the shared
buffer and puts it in nextc

region buffer when (count > 0) {
nextc = pool[out];
out = (out+1) % n;
count--;

}

" _\ el '::: l_} .‘., -~
Operating System Concepts — 7th Edition 6.60 Silberschatz, Galvin and Gagne ©2007

Implementation region x when Bdo S

O Associate with the shared variable x, the following
variables:

semaphore mutex, first-delay, second-delay;
int first-count, second-count;

0 Mutually exclusive access to the critical section is
provided by mutex.

O If a process cannot enter the critical section because the
Boolean expression B is false, it initially waits on the
first-delay semaphore; moved to the second-delay

-, semaphore before it is allowed to reevaluate B.

Operating System Concepts — 7th Edition 6.61 Silberschatz, Galvin and Gagne ©2007

Implementation

O Keep track of the number of processes waiting on first-
delay and second-delay, with first-count and second-
count respectively.

O The algorithm assumes a FIFO ordering in the queuing
of processes for a semaphore.

O For an arbitrary queuing discipline, a more complicated
Implementation is required.

Operating System Concepts — 7th Edition 6.62 Silberschatz, Galvin and Gagne ©2007

Monitors

O High-level synchronization construct that allows the safe sharing
of an abstract data type among concurrent processes.

monitor monitor-name

{

shared variable declarations

procedure body P17 (...) {

}

procedure body P2 (...) {

}

procedure body Pn (...) {

}

{

initialization code

} -,':f': .

} :_.‘_._';T 5 2 B

Operating System Concepts — 7th Edition 6.63 Silberschatz, Galvin and Gagne ©2007

Monitors

O To allow a process to wait within the monitor,
a condition variable must be declared, as

condition Xx, y;

O Condition variable can only be used with the
operations wait and signal.
= The operation

x.wait();
means that the process invoking this operation is
suspended until another process invokes

x.signal();

= The x.signal operation resumes exactly one suspended
process. If no process is suspended, then the signal
operation has no effect.

Operating System Concepts — 7th Edition 6.64 Silberschatz, Galvin and Gagne ©2007

Schematic View of a Monitor

entry queue

shared data

<
operations

initialization
code

Operating System Concepts — 7th Edition 6.65 Silberschatz, Galvin and Gagne ©2007

Monitor With Condition Variables

shared data

queues associated with {
X, y conditions

operations

initialization
code

L = 24 .‘“ 4
Operating System Concepts — 7th Edition 6.66 Silberschatz, Galvin and Gagne ©2007

Dining Philosophers Example

monitor dp

{
enum {thinking, hungry, eating} state[5];

condition self[5];

void pickup(int i) /] following slides
void putdown(inti) // following slides
void test(int i) /] following slides

void init() {
for (inti=0;i<5;i++)
state[i] = thinking;

Operating System Concepts — 7th Edition 6.67 Silberschatz, Galvin and Gagne ©2007

Dining Philosophers

void pickup(int i) {
state[i] = hungry;
test[i];
if (state[i] != eating)
selffi].wait();

}

void putdown(int i) {
state[i] = thinking;
I test left and right neighbors
test((i+4) % 5);
test((i+1) % 5);

L = ;‘ .‘“ .VV
Operating System Concepts — 7th Edition 6.68 Silberschatz, Galvin and Gagne ©2007

Dining Philosophers

void test(int i) {
if ((state[(l + 4) % 5] != eating) &&
(state[i] == hungry) &&
(state[(i + 1) % 5] != eating)) {
state[i] = eating;
self[i].signal();

Operating System Concepts — 7th Edition 6.69 Silberschatz, Galvin and Gagne ©2007

Monitor Implementation Using Semaphores

O Variables
semaphore mutex; // (initially = 1)
semaphore next; // (initially = 0)
int next-count = 0;

O Each external procedure F will be replaced by
wait(mutex);

body of F;
if (next-count > 0)
signal(next)
else

signal(mutex);

o Mutual exclusion within a monitor is ensured.

. .\ - ;= .‘" .77
Operating System Concepts — 7th Edition 6.70 Silberschatz, Galvin and Gagne ©2007

Monitor Implementation

O For each condition variable x, we have:
semaphore x-sem; // (initially = 0)

int x-count = 0;

O The operation x.wait can be implemented as:

X-count++;

Operating System Concepts — 7t Edition

if (next-count > 0)
signal(next);
else
signal(mutex);
wait(x-sem);
x-count--;

6.71

Silberschatz, Galvin and Gagne ©2007

Monitor Implementation

O The operation x.signal can be implemented as:

if (x-count > 0) {
next-count++;
signal(x-sem);
wait(next);
next-count--;

L = ;‘ .‘“ .VV
Operating System Concepts — 7th Edition 6.72 Silberschatz, Galvin and Gagne ©2007

Monitor Implementation

O Conditional-wait construct: x.wait(c);
m C — integer expression evaluated when the wait operation is
executed.

= value of ¢ (a priority number) stored with the name of the
process that is suspended.

= when x.signal is executed, process with smallest
associated priority number is resumed next.

0 Check two conditions to establish correctness

of system:

m User processes must always make their calls on the monitor
in a correct sequence.

= Must ensure that an uncooperative process does not ignore
the mutual-exclusion gateway provided by the monitor, and
try to access the shared resource directly, without using the
access protocols.

Operating System Concepts — 7th Edition 6.73 Silberschatz, Galvin and Gagne ©2007

Java 5.0 Synchronization

public class SyncTest {

List<String> values = new ArrayList<String>()&—— —g‘— -,C—Dl- E” 0 | E—l

public void test() {
Thread writeThread = new Thread() {
public void run() {
while(true) {
for(inti=0;i<10; i++){

}add("VaI"+ i); _g.__}c_?_ E“ Ol E‘| %
try { =205l M
Thread.sleep(50); Ol =0t .l

} catch (InterruptedException e) {
}
}

}

h
Synchronized € AtE0tHA

= Ab
=
= 32 =ME EdAIII= O

=

Operating System Concepts — 7t Edition

C

Thread readThread = new Thread() {
public void run() {
while(true) {

print();

try {
Thread.sleep(100);

} catch (InterruptedException e) {
e.printStackTrace();

writeThread.start();
readThread.start();

}

public void add(String value) {
values.add(value);

}

public void print() {
for(String value: values) {
System.out.printin(value);
}
}

public static void main(String[] args) {
(new SyncTest()).test();

}

6.74 Silberschatz, Galvin and Gag

ne ©2007

Java 5.0 Synchronization

O SynchronizedE 0| &8t S| 3t

public synchronized void add(String value) {
values.add(value);

}

public synchronized void print() {
for(String value: values) {
System.out.printin(value);

}
}

= Synchronized&
s

0
= BHEINOZ 35
D&+ US

25101 HASZES HiEINOR a5
E 2.

o
2 Once Write Many Read 2| 32 450 S &2

Operating System Concepts — 7th Edition 6.75 Silberschatz, Galvin and Gagne ©2007

Java 5.0 Synchronization

0 ReadWriteLock= 0| & et Synchronization

List<String> values = new ArrayList<String>();
final ReentrantReadWriteLock lock = new ReentrantReadWriteLock();

public void add(String value) {
lock.writeLock().lock();

try {

values.add(value); —
}finally { Deadlockl M & W=
lock.writeLock().unlock();

}
}

public void print() {

lock.readLock().lock();

try {
for(String value: values) {

System.out.printin(value);

}

} finally {
lock.readLock().unlock();

Operating System Concepts — 7th Edition 6.76 Silberschatz, Galvin and Gagne ©2007

Java 5.0 Synchronization

0 ReadWriteLock | Al Deadlock®2| 2| 11

m LdHAIZISO locksS 2 K| RotH Exception & A4

public void print() {
try {
if(lock.readLock().tryLock(100, TimeUnit. MILLISECONDS)) {
try {
for(String value: values) {
System.out.printin(value);
}
} finally {
lock.readLock().unlock();
}
}else {
System.out.printin("Lock Timeout");
}
} catch (InterruptedException e) {
e.printStackTrace();

}
}

Operating System Concepts — 7th Edition 6.77 Silberschatz, Galvin and Gagne ©2007

