Chapter 7: Deadlocks

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 Silberschatz, Galvin and Gagne ©2007

Chapter 7: Deadlocks

O The Deadlock Problem

O System Model

O Deadlock Characterization

O Methods for Handling Deadlocks
O Deadlock Prevention

O Deadlock Avoidance

O Deadlock Detection

O Recovery from Deadlock

Operating System Concepts— 7th Edition 7.2 Silberschatz, Galvin and Gagne ©2007

Deadlock & Al

O A set of blocked processes each holding a resource and

waiting to acquire a resource held by another process in
the set.

O Example
= System has 2 disk drives.

= P, and P, each hold one disk drive and each needs
another one.

O Example
= semaphores A and B, initialized to 1
Po P,
wait (A); wait(B)

wait (B); wait(A)

Operating System Concepts— 7th Edition 7.3 Silberschatz, Galvin and Gagne ©2007

Bridge Crossing Example

O Traffic only in one direction.
Each section of a bridge can be viewed as a resource.

O If a deadlock occurs, it can be resolved if one car
backs up (preempt resources and rollback).

O Several cars may have to be backed up if a deadlock
oCcurs.

O Starvation is possible.

O

Operating System Concepts— 7th Edition 7.4 Silberschatz, Galvin and Gagne ©2007

Deadlock2 & Al Ol

I Jdo =8 = (A4, UAd >
ga"Ol 20| ELE = AN ZElE A&
==80| CIATDE &85 M2 Z < recovery Jt
01316

m BHX| 20Ot : saturation(E 3HAHEH) threshold & &

O WEJENS Ol - A= AL A w=alel
m ZelH
|
|

Operating System Concepts— 7th Edition SNU Z 2L E & X 7.5 Silberschatz, Galvin and Gagne ©2007

Deadlock® E4

Ct= Ul el £240] 25 CHE< ([B DeadlockO| (2 R A H)

O Mutual exclusion(Al S HH Hl):
= only one process at a time can use a resource.
0 Hold and wait(& S 6tH tHI1):

= a process holding at least one resource is waiting
to acquire additional resources held by other
processes.

o No preemption(d| & &):

® a resource can be released only voluntarily by the
process holding it, after that process has
completed its task.

o Circular wait(=&t1J1):

= there exists a set {P,, P4, ..., Py} of waiting
processes such that P, is waiting for a resource
that is held by P,, P, is waiting for a resource that
IS held by

P,, ..., P,_, is waiting for a resource that is held by

S N P,, and PO is waiting for a resource that is held by P,,. ¥
Operating System Concepts— 7t Ed|t|on 7.6 Sllberschatz Galvin and Gagne ©2007

System Model

O Resource types R, R,, ..., R,
CPU cycles, memory space, I/O devices

O Each resource type R, has W, instances.

o2 Iz AAL AHE AFE = A

m request (2) use
m use ‘ (1)request i
= release (3) release X

Silberschatz, Galvin and éagr{e ©2007

Operating System Concepts— 7t Edition 7.7

Resource-Allocation Graph

A set of vertices V and a set of edges E.

O V is partitioned into two types:

m P={P,, P,, ..., P}, the set consisting of all
the processes in the system.

= R={R,, R,, ..., R}, the set consisting of all
resource types in the system.

O request edge — directed edge P, —> R,

O assignment edge — directed edge R; — P,

Operating System Concepts— 7th Edition 7.8 Silberschatz, Galvin and Gagne ©2007

Resource-Allocation Graph (Cont.)

O Process

O Resource Type with 4 instances

O P, requests instance of R,

O P;is holding an instance of R,

Ot

J

L ' i
Operating System Concepts— 7th Edition 7.9 Silberschatz, Galvin and Gagne ©2007

Example of a Resource Allocation Graph

Operating System Concepts— 7t Edition

R, R.

L2 L)

\ \

\

L] ®
e
n |

R,

7.10

Silberschatz, Galvin and G'agn—e ©2007

Resource Allocation Graph With A Deadlock

. ®
°

Fiz ®
R,

Operating System Concepts— 7th Edition 7.1 Silberschatz, Galvin and Gagne ©2007

Graph With A Cycle But No Deadlock

P
R1 /(;
'/
[Ty
) _ P3
R,
'Y

Operating System Concepts— 7th Edition 7.12 Silberschatz, Galvin and Gagne ©2007

Basic Facts

O If graph contains no cycles = no deadlock.

o If graph contains a cycle =

= if only one instance per resource type,
then deadlock.

= if several instances per resource type,
possibility of deadlock.

Operating System Concepts— 7th Edition 7.13 Silberschatz, Galvin and Gagne ©2007

Java Deadlock Example

class A implements Runnable class B implements Runnable
{ {
private Lock first, second; private Lock first, second;
public A(Lock first, Lock second) { public A(Lock first, Lock second) {

this.first = first;
this.second = second;

} }

public void run() {

this.first = first;
this.second = second;

public void run() {

try {
first.lock(); try { .
// do something EE““ﬂd-lﬂﬂk(?.
second.lock(): /f q; something
// do something else flrﬂt-lﬂﬂk[)§
} // do something else
finally { b
first.unlock(); finally {
second.unlock(); second.unlock();
} first.unlock() ;

}
} }
}

Thread A Thread B

Operating System Concepts— 7th Edition 7.14 Silberschatz, Galvin and Gagne ©2007

Java Deadlock Example

public static void main(String argl[l) {
Lock lockX = new ReentrantLock();
Lock lockY = new ReentrantLock();

Thread threadiA = new Thread(new A{lockX,lockY));
Thread threadB = new Thread(new B{lockX,lockY));

threadA.start();
threadB.start();

Deadlock is possible if:

threadA -> lockY -> threadB -> lockX -> threadA

Operating System Concepts— 7th Edition 7.15 Silberschatz, Galvin and Gagne ©2007

Methods for Handling Deadlocks
o Ol 2 (prevention) &£ = 3| Il (avoidence) : Deadlock
AMENDFEO MoK XS &
0 2/= :Deadlock &EiJt &= A= &Lt o Eet &, Z2|H
2 =.
or="(}7]

o fAl
A

Operating System Concepts— 7t Edition

: AIAED A0 A deadlock O] H 2| & A4 GHA
used by most operating systems, including UNIX

Lo;

7.16 Silberschatz, Galvin and Gagne ©2007

Deadlock Prevention

DEAEHOF LA B, Ul JHX BRE 2 25210] BHEGHOF GI2 2,
OIS XRAZ ZAB ofLIJL HEGHX $E= 27

O Mutual Exclusion — not required for sharable
resources; must hold for nonsharable resources.(& Xl
=)

0 Hold and Wait — must guarantee that whenever a
process requests a resource, it does not hold any

other resources.
= 1) Require process to request and be allocated all its resources
before it begins execution(& & 25 &t 8),
m 2) or allow process to request resources only when the process has
none. (B2 0| OIRAHEL 8l i KF)

T AL A=

%4, m Low resource utilization; starvation possible . <
¢\ /4 = 0l)DVDZ 2H DiskZ Mt SAt T FE, ZRIESt=

Operating System Concepts— 7th Edition 7.17 Silberschatz, Galvin and Gagne ©2007

Deadlock Prevention (Cont.)

O No Preemption —
= If a process that is holding some resources requests
another resource that cannot be immediately allocated
to it, then all resources currently being held are released.

(Bt cIAAE 26t UCHKN, UE elAANSUHCOZ sSE2F 4 QIO HiZ

release)

= Process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting.

RECAASN 2F MEEIIsE [restart

o Circular Wait — impose a total ordering of all resource
types, and require that each process requests resources in

an increasing order of enumeration.
n LEXNE =AHE g
SkCt

m L= 03 =X2 A release= &Y

I L

Operating System Concepts— 7th Edition 7.18 Silberschatz, Galvin and Gagne ©2007

Deadlock Avoidance

AMNAZH tiet ARSI EES

(- — -/ —

[

=0t 2|1

O Simplest and most useful model requires that each
process declare the maximum number of resources
of each type that it may need.

= IR OEGIHN 88 RS 2 T2 AJ RS 2 B0 KHR0 N £XE MOIGES

2ot A

O The deadlock-avoidance algorithm dynamically
examines the resource-allocation state to ensure that
there can never be a circular-wait condition.

m circular-wait & EH Dt E 0§ LA GHA &2 & = resouce-allocation stateE =R Al &

O Resource-allocation state is defined by the number of
available and allocated resources, and the maximum
.demands of the processes.

Operating System Concepts— 7th Edition 7.19 Silberschatz, Galvin and Gagne ©2007

Safe State

O When a process requests an available resource, system must
decide if immediate allocation leaves the system in a safe state.

O System is in safe state if there exists a sequence <P, P, ..., P>
of ALL the processes is the systems such that for each P,, the
resources that P, can still request can be satisfied by currently
available resources + resources held by all the P, with j < /.

m safe sequence(Ct& &= A)

O Thatis:
= [f P, resource needs are not immediately available, then P,
can wait until all P; have finished.
= When P;is finished, P; can obtain needed resources, execute,
return allocated resources, and terminate.
= When P, terminates, P;,, can obtain its needed resources,
and so on.

Operating System Concepts— 7th Edition 7.20 Silberschatz, Galvin and Gagne ©2007

Basic Facts

O If a system is in safe state = no deadlocks.

O If a system is in unsafe state = possibility
of deadlock.

O Avoidance = ensure that a system will
never enter an unsafe state.

unsafe

deadlock

/

Operating System Concepts— 7th Edition 7.21 Silberschatz, Galvin and Gagne ©2007

Avoidance algorithms

O Single instance of a resource type.
m resource-allocation graph

O Multiple instances of a resource type.
= the banker’s algorithm

b

Operating System Concepts— 7th Edition 7.22 Silberschatz, Galvin and Gagne ©2007

Resource-Allocation Graph Scheme

O Request edge P, — R,

= indicated that process P; may request
resource R; represented by a dashed line.

= Claim edge converts to request edge when a
process requests a resource.

O assignment edge

m when the resource is allocated to the
Process.

0 When a resource is released by a process,
assignment edge reconverts to a claim edge.

O Resources must be claimed a priori in the
system.

Operating System Concepts— 7th Edition 7.23 Silberschatz, Galvin and Gagne ©2007

Resource-Allocation Graph

/ Assignment

A b '~ Request

al

Operating System Concepts— 7th Edition 7.24 Silberschatz, Galvin and Gagne ©2007

Unsafe State In Resource-Allocation Graph

Operating System Concepts— 7th Edition 7.25 Silberschatz, Galvin and Gagne ©2007

Resource-Allocation Graph Algorithm

O Suppose that process P, requests a resource
Rj

O The request can be granted only if converting
the request edge to an assignment edge
does not result in the formation of a cycle in

the resource allocation graph

Operating System Concepts— 7th Edition 7.26 Silberschatz, Galvin and Gagne ©2007

Banker’s Algorithm(2& & 2 112|S)

O Multiple instances.

O Each process must a priori claim maximum
use.

O When a process requests a resource it may
have to wait.

0 When a process gets all its resources it
must return them in a finite amount of time.

Operating System Concepts— 7th Edition 7.27 Silberschatz, Galvin and Gagne ©2007

Data Structures for the Banker’s Algorithm

Let n = number of processes, and m = number of resources types.

O Available: Vector of length m. If available [j] = k, there are
k instances of resource type R;available.

m M ZZ2AA00 EEED H0t/UA= AES &

O Max: n x m matrix. If Max [i,j] = k, then process P; may
request at most k instances of resource type R..

m A EZANAG I RAE

O Allocation: nx m matrix. If Allocation[i,j] = k then P;is
currently allocated k instances of R;
m Sl Y= &

O Need: nx m matrix. If Need[i] = k, then P, may need k
more instances of R;to complete its task.

m E ZZ2AA LS AN FHZ2 HRZ &= Y

Need [i,j] = Max{i,j] — Allocation [i,j].

Operating System Concepts— 7th Edition 7.28 Silberschatz, Galvin and Gagne ©2007

Safety Algorithm

1. Let Work and Finish be vectors of length m and n,
respectively. Initialize:

Work = Available
Finish [l] = false fori= 0,1, ..., n- 1.

2. Find and i such that both:
(a) Finish [i] = false
(b) Need; < Work Safety 22|15
If no such i exists, go to step 4.

3. Work = Work + Allocation,;
Finish[i] = true
go to step 2.

gand . If Finish [i] == true for all /, then the system is in a safe sta Becor.

Operating System Concepts— 7th Edition 7.29 Silberschatz, Galvin and Gagne ©2007

Resource-Request Algorithm for Process P;

el AAS RES XS [safe stateE S XN = A=K XM

Request = request vector for process P,. If Request;[j] = k then
process P; wants k instances of resource type R;

1. If Request; < Need, go to step 2. Otherwise, raise error
condition, since process has exceeded its maximum claim.

2. If Request; < Available, go to step 3. Otherwise P; must
wait, since resources are not available.

3. Pretend to allocate requested resources to P; by modifying
the state as follows:

Available = Available — Request;
Allocation; = Allocation; + Request;
Need, = Need; — Request;
| If safe = the resources are allocated to PI.
. If unsafe = Pi must wait, and the old resource-
allocation state is restored

Safety €1)c|S

@ request < <2 >
7.30

Operating System Concepts— 7th Edition Silberschatz, Galvin and Gagne ©2007

Example of Banker’s Algorithm

O S processes P, through P,;
3 resource types:
A (10 instances), B (Sinstances), and C (7 instances).
O Snapshot at time T
Allocation Max Available
ABC ABC ABC

P, 010 753 332

P, 200 322

P, 302 902

P, 211 222

P, 002 433

4N ,:v e
Operating System Concepts— 7th Edition 7.31 Silberschatz, Galvin and Gagne ©2007

Example (Cont.)

O The content of the matrix Need is defined to be
Max — Allocation.

Need

ABC
P, 743
P, 122
P, 600
P, 011
P, 431

O The system is in a safe state since the sequence
<P,, P;, P,, P,, P,> satisfies safety criteria.

Operating System Concepts— 7th Edition 7.32 Silberschatz, Galvin and Gagne ©2007

Example: P, Request (1,0,2)

O Check that Request < Available (that is, (1,0,2) < (3,3,2) = true.

Allocation Need Available
ABC ABC ABC
P, 010 743 230
P, 302 020
P, 301 600
P, 211 011
P, 002 431

O Executing safety algorithm shows that sequence < P,, P;, P,, Py, P,>
satisfies safety requirement.

o Can request for (3,3,0) by P, be granted?
o Can request for (0,2,0) by P, be granted?

Operating System Concepts— 7th Edition 7.33 Silberschatz, Galvin and Gagne ©2007

3= J|HE /8t Deadlock Detection

O Allow system to enter deadlock state

0 Detection algorithm

O Recovery scheme

Operating System Concepts— 7th Edition 7.34 Silberschatz, Galvin and Gagne ©2007

-IO

2F AHREHY & AHA 0] e Ofel &
Single Instance of Each Resource Type

O Maintain wait-for graph
= Nodes are processes.
= P, — P; if P;is waiting for P,

O Periodically invoke an algorithm that
searches for a cycle in the graph. If there is
a cycle, there exists a deadlock.

o FIHELZ JJHE &9 cycle ZEX OFE SMots 2clE5S &4

O An algorithm to detect a cycle in a graph
requires an order of n? operations, where n

Is the number of vertices in the graph.

Silberschatz, Galvin and Gagne ©2007

Operating System Concepts— 7th Edition 7.35

HO
S T

o

2] bl
Resource-Allocation Graph and Wait-for Graph

o

2 AhE et & A0

Ly

F 3

(b)

(@)

Resource-Allocation Graph Corresponding wait-for graph

b

Operating System Concepts— 7th Edition 7.36 Silberschatz, Galvin and Gagne ©2007

2 XHRIENY © R0l Ofe] el B

Several Instances of a Resource Type

O Available: A vector of length m indicates the
number of available resources of each type.

O Allocation: An n x m matrix defines the number
of resources of each type currently allocated to
each process.

O Request: An n x m matrix indicates the current
request of each process. If Request [i] = k,
then process P, is requesting kK more instances
of resource type. R,.

Operating System Concepts— 7th Edition 7.37 Silberschatz, Galvin and Gagne ©2007

2 XHRIENY © R0l Ofe] el B

Detection Algorithm

1. Let Work and Finish be vectors of length m and n,
respectively Initialize:

(a) Work = Available

by Fori=1,2, ..., n, if Allocation; # 0, then
Finishl[i] = false;otherwise, Finishli] = true.

2. Find an index i such that both:
(a)Finish[i] == false
(b)Request; < Work
If no such j exists, go to step 4.

Operating System Concepts— 7th Edition 7.38 Silberschatz, Galvin and Gagne ©2007

2 RHREY G X0l 0f2f el B

Detection Algorithm (Cont.)

3. Work = Work + Allocation,;
Finish[i] = true
go to step 2.

4. If Finish[i] == false, for some j, 1 <i< n, then
the system is in deadlock state. Moreover, if
Finish[i] == false, then P; is deadlocked.

Algorithm requires an order of O(m x n? operations to
detect whether the system is in deadlocked state.

Operating System Concepts— 7th Edition 7.39 Silberschatz, Galvin and Gagne ©2007

2 RHREY G X0l 0f2f el B

Example of Detection Algorithm

O Five processes P, through P,; three resource types
A (7 instances), B (2 instances), and C (6 instances).

O Snapshot at time T

Allocation Request Available
ABC ABC ABC
P, 010 000 000
P, 200 202
P, 303 000
P, 211 100
P, 002 002

O Sequence <P,, P,, P;, P, P,> will result in Finish[i] = true

for all |.

Operating System Concepts— 7t Edition

7.40

Silberschatz, Galvin and éagne ©2007

2 RHREY G X0l 0f2f el B

Example (Cont.)

O P, requests an additional instance of type C.
Request
ABC
P, 000
P, 201
P, 001
P3
P4

100
002
O State of system?

= Can reclaim resources held by process P,, but insufficient
resources to fulfill other processes; requests.

= Deadlock exists, consisting of processes P,, P,, P, and

Operating System Concepts— 7th Edition 7.41 Silberschatz, Galvin and Gagne ©2007

2 XHRIENY © R0l Ofe] el B

Detection-Algorithm Usage

o When, and how often, to invoke depends on:
= How often a deadlock is likely to occur?

= How many processes will need to be rolled
back?

one for each disjoint cycle

O If detection algorithm is invoked arbitrarily, there
may be many cycles in the resource graph and
so we would not be able to tell which of the many
deadlocked processes “caused” the deadlock.

Operating System Concepts— 7th Edition 7.42 Silberschatz, Galvin and Gagne ©2007

2t B o X0l oY JHel B R
Recovery from Deadlock: Process Termination

O Abort all deadlocked processes.

O Abort one process at a time until the deadlock
cycle is eliminated.

O In which order should we choose to abort?
= Priority of the process.

= How long process has computed, and how
much longer to completion.

= Resources the process has used.

= Resources process needs to complete.

= How many processes will need to be terminated.
= |s process interactive or batch?

Operating System Concepts— 7th Edition 7.43 Silberschatz, Galvin and Gagne ©2007

Recovery from Deadlock: Resource Preemption

0 Z=ANASEE St WEAH 8=
mWEH ISHASE 25 SA
m W& AENIF M S WIEAl 8t =2 Al A A
=2

0 Preemption & B0 A2 2l =
= Selecting a victim — minimize cost.

m Rollback — return to some safe state,
restart process for that state.

= Starvation — same process may always be
picked as victim, include number of
rollback in cost factor.

Operating System Concepts— 7th Edition 7.44 Silberschatz, Galvin and Gagne ©2007

End of Chapter 7

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 Silberschatz, Galvin and Gagne ©2007

