
Operating System Concepts with Java – 7th Edition, Nov 15, 2006 Silberschatz, Galvin and Gagne ©2007

Chapter 7: Deadlocks

7.2 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Chapter 7: Deadlocks

p The Deadlock Problem
p System Model
p Deadlock Characterization
p Methods for Handling Deadlocks
p Deadlock Prevention
p Deadlock Avoidance
p Deadlock Detection
p Recovery from Deadlock

7.3 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Deadlock 문제

p A set of blocked processes each holding a resource and
waiting to acquire a resource held by another process in
the set.

p Example
n System has 2 disk drives.
n P1 and P2 each hold one disk drive and each needs

another one.
p Example

n semaphores A and B, initialized to 1
P0 P1

wait (A); wait(B)
wait (B); wait(A)

7.4 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Bridge Crossing Example

p Traffic only in one direction.
p Each section of a bridge can be viewed as a resource.
p If a deadlock occurs, it can be resolved if one car

backs up (preempt resources and rollback).
p Several cars may have to be backed up if a deadlock

occurs.
p Starvation is possible.

7.5 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Deadlock의실제예

p 교착상태의예 -스풀링시스템에서의교착상태
n 프로그램의출력 Þ디스크, 디스크Þ프린터
n 출력이완전히끝난후실제프린트시작

n 부분출력이디스크를완전히채울경우 recovery 가
어려움

n 방지방안 : saturation(포화상태) threshold 설정

SNU 강의노트 참조

7.6 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Deadlock의특성

p Mutual exclusion(상호배제):
n only one process at a time can use a resource.

p Hold and wait(점유하며대기):
n a process holding at least one resource is waiting

to acquire additional resources held by other
processes.

p No preemption(비선점):
n a resource can be released only voluntarily by the

process holding it, after that process has
completed its task.

p Circular wait(순환대기):
n there exists a set {P0, P1, …, P0} of waiting

processes such that P0 is waiting for a resource
that is held by P1, P1 is waiting for a resource that
is held by

P2, …, Pn–1 is waiting for a resource that is held by
Pn, and P0 is waiting for a resource that is held by P0.

다음네개의조건이모두만족할때만 Deadlock이발생(필요조건)

7.7 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

System Model

p Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

p Each resource type Ri has Wi instances.

p 각프로세스의자원사용순서

n request
n use
n release

(1)request

(2) use

(3) release
x

7.8 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Resource-Allocation Graph

p V is partitioned into two types:
n P = {P1, P2, …, Pn}, the set consisting of all

the processes in the system.
n R = {R1, R2, …, Rm}, the set consisting of all

resource types in the system.

p request edge – directed edge P1 ® Rj

p assignment edge – directed edge Rj ® Pi

A set of vertices V and a set of edges E.

7.9 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Resource-Allocation Graph (Cont.)

p Process

p Resource Type with 4 instances

p Pi requests instance of Rj

p Pi is holding an instance of Rj

Pi

Pi

Rj

Rj

7.10 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Example of a Resource Allocation Graph

7.11 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Resource Allocation Graph With A Deadlock

7.12 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Graph With A Cycle But No Deadlock

7.13 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Basic Facts

p If graph contains no cycles Þ no deadlock.

p If graph contains a cycle Þ
n if only one instance per resource type,

then deadlock.
n if several instances per resource type,

possibility of deadlock.

7.14 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Java Deadlock Example

Thread A Thread B

7.15 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Java Deadlock Example

Deadlock is possible if:

threadA -> lockY -> threadB -> lockX -> threadA

7.16 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Methods for Handling Deadlocks

p 예방(prevention) 또는회피(avoidence) : Deadlock
상태가절대발생하지않도록함

p 회복 : Deadlock 상태가되는것을일단허용한후, 걸리면
회복.

p 무시 : 시스템상에서 deadlock이거의발생하지않는다고
가정; used by most operating systems, including UNIX.

7.17 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Deadlock Prevention

p Mutual Exclusion – not required for sharable
resources; must hold for nonsharable resources.(강제
불가)

p Hold and Wait – must guarantee that whenever a
process requests a resource, it does not hold any
other resources.
n 1) Require process to request and be allocated all its resources

before it begins execution(실행전모두확보),
n 2) or allow process to request resources only when the process has

none. (확보된것이아무것도없을때요청)
n Low resource utilization; starvation possible
n 예) DVD로부터 Disk로파일복사후정렬, 프린트하는프로그램

교착상태가 발생하려면, 네 가지 필요조건 각각이 만족해야 하므로,
이들 조건중 최소한 하나가 성립하지 않도록 보장

7.18 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Deadlock Prevention (Cont.)

p No Preemption –
n If a process that is holding some resources requests

another resource that cannot be immediately allocated
to it, then all resources currently being held are released.

p (한리소스를확보하고있으면서, 다른리소스가즉각적으로확보될수없으면바로
release)

n Process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting.

p 모든리소스들이모두재확보가능할때 restart

p Circular Wait – impose a total ordering of all resource
types, and require that each process requests resources in
an increasing order of enumeration.
n 오름차순순차적할당

n 또는아랫순서의자원 release후할당

7.19 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Deadlock Avoidance

p Simplest and most useful model requires that each
process declare the maximum number of resources
of each type that it may need.

n 가장단순하면서유용한모델은각프로세스가 필요한각타입의자원의최대숫자를선언하도록
요구하는것

p The deadlock-avoidance algorithm dynamically
examines the resource-allocation state to ensure that
there can never be a circular-wait condition.

n circular-wait 상태가절대발생하지않도록 resouce-allocation state를유지함

p Resource-allocation state is defined by the number of
available and allocated resources, and the maximum
demands of the processes.

시스템에대한선제적인정보를활용하여회피

7.20 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Safe State
p When a process requests an available resource, system must

decide if immediate allocation leaves the system in a safe state.

p System is in safe state if there exists a sequence <P1, P2, …, Pn>
of ALL the processes is the systems such that for each Pi, the
resources that Pi can still request can be satisfied by currently
available resources + resources held by all the Pj, with j < i.
n safe sequence(안전순서)

p That is:
n If Pi resource needs are not immediately available, then Pi

can wait until all Pj have finished.
n When Pj is finished, Pi can obtain needed resources, execute,

return allocated resources, and terminate.
n When Pi terminates, Pi +1 can obtain its needed resources,

and so on.

7.21 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Basic Facts

p If a system is in safe state Þ no deadlocks.
p If a system is in unsafe state Þ possibility

of deadlock.
p Avoidance Þ ensure that a system will

never enter an unsafe state.

7.22 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Avoidance algorithms

p Single instance of a resource type.
n resource-allocation graph

p Multiple instances of a resource type.
n the banker’s algorithm

7.23 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Resource-Allocation Graph Scheme

p Request edge Pi ® Rj

n indicated that process Pj may request
resource Rj; represented by a dashed line.

n Claim edge converts to request edge when a
process requests a resource.

p assignment edge
n when the resource is allocated to the

process.
p When a resource is released by a process,

assignment edge reconverts to a claim edge.
p Resources must be claimed a priori in the

system.

7.24 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Resource-Allocation Graph

Request

Assignment

7.25 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Unsafe State In Resource-Allocation Graph

7.26 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Resource-Allocation Graph Algorithm

p Suppose that process Pi requests a resource
Rj

p The request can be granted only if converting
the request edge to an assignment edge
does not result in the formation of a cycle in
the resource allocation graph

7.27 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Banker’s Algorithm(은행원알고리즘)

p Multiple instances.

p Each process must a priori claim maximum
use.

p When a process requests a resource it may
have to wait.

p When a process gets all its resources it
must return them in a finite amount of time.

7.28 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Data Structures for the Banker’s Algorithm

p Available: Vector of length m. If available [j] = k, there are
k instances of resource type Rj available.
n 현재프로세스에할당되고남아있는자원의양

p Max: n x m matrix. If Max [i,j] = k, then process Pi may
request at most k instances of resource type Rj.
n 각프로세스당최대요구량

p Allocation: n x m matrix. If Allocation[i,j] = k then Pi is
currently allocated k instances of Rj.
n 현재할당된양

p Need: n x m matrix. If Need[i,j] = k, then Pi may need k
more instances of Rj to complete its task.
n 최대프로세스활성화시에추가로필요로되는양

Need [i,j] = Max[i,j] – Allocation [i,j].

Let n = number of processes, and m = number of resources types.

7.29 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Safety Algorithm

1. Let Work and Finish be vectors of length m and n,
respectively. Initialize:

Work = Available
Finish [i] = false for i = 0, 1, …, n- 1.

2. Find and i such that both:
(a) Finish [i] = false
(b) Needi £ Work
If no such i exists, go to step 4.

3. Work = Work + Allocationi
Finish[i] = true
go to step 2.

4. If Finish [i] == true for all i, then the system is in a safe state.

Safety 알고리즘

7.30 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Resource-Request Algorithm for Process Pi

Request = request vector for process Pi. If Requesti [j] = k then
process Pi wants k instances of resource type Rj.
1. If Requesti £ Needi go to step 2. Otherwise, raise error

condition, since process has exceeded its maximum claim.
2. If Requesti £ Available, go to step 3. Otherwise Pi must

wait, since resources are not available.
3. Pretend to allocate requested resources to Pi by modifying

the state as follows:
Available = Available – Request;
Allocationi = Allocationi + Requesti;
Needi = Needi – Requesti;

l If safe Þ the resources are allocated to Pi.
l If unsafe Þ Pi must wait, and the old resource-

allocation state is restored

리소스의 요청을 처리했을 때 safe state를 유지할 수 있는지 처리

s2

Safety 알고리즘

s1 request

7.31 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Example of Banker’s Algorithm
p 5 processes P0 through P4;

3 resource types:
A (10 instances), B (5instances), and C (7 instances).

p Snapshot at time T0:
Allocation Max Available

A B C A B C A B C
P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

7.32 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Example (Cont.)

p The content of the matrix Need is defined to be
Max – Allocation.

Need
A B C

P0 7 4 3
P1 1 2 2
P2 6 0 0
P3 0 1 1
P4 4 3 1

p The system is in a safe state since the sequence
< P1, P3, P4, P2, P0> satisfies safety criteria.

7.33 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Example: P1 Request (1,0,2)

p Check that Request £ Available (that is, (1,0,2) £ (3,3,2) Þ true.
Allocation Need Available

A B C A B C A B C
P0 0 1 0 7 4 3 2 3 0
P1 3 0 2 0 2 0
P2 3 0 1 6 0 0
P3 2 1 1 0 1 1
P4 0 0 2 4 3 1

p Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2>
satisfies safety requirement.

p Can request for (3,3,0) by P4 be granted?
p Can request for (0,2,0) by P0 be granted?

7.34 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

회복기법을위한 Deadlock Detection

p Allow system to enter deadlock state

p Detection algorithm

p Recovery scheme

7.35 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Single Instance of Each Resource Type

p Maintain wait-for graph
n Nodes are processes.
n Pi ® Pj if Pi is waiting for Pj.

p Periodically invoke an algorithm that
searches for a cycle in the graph. If there is
a cycle, there exists a deadlock.

n 주기적으로 그래프상의 cycle 존재여부를검색하는알고리즘을 실행

p An algorithm to detect a cycle in a graph
requires an order of n2 operations, where n
is the number of vertices in the graph.

각 자원타입 당 자원이 한 개인 경우

7.36 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

각 자원타입 당 자원이 한 개인 경우

7.37 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Several Instances of a Resource Type

p Available: A vector of length m indicates the
number of available resources of each type.

p Allocation: An n x m matrix defines the number
of resources of each type currently allocated to
each process.

p Request: An n x m matrix indicates the current
request of each process. If Request [ij] = k,
then process Pi is requesting k more instances
of resource type. Rj.

각 자원타입 당 자원이 여러 개인 경우

7.38 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Detection Algorithm

1. Let Work and Finish be vectors of length m and n,
respectively Initialize:
(a) Work = Available
(b) For i = 1,2, …, n, if Allocationi ¹ 0, then

Finish[i] = false;otherwise, Finish[i] = true.

2. Find an index i such that both:
(a)Finish[i] == false
(b)Requesti £ Work
If no such i exists, go to step 4.

각 자원타입 당 자원이 여러 개인 경우

7.39 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Detection Algorithm (Cont.)

3. Work = Work + Allocationi
Finish[i] = true
go to step 2.

4. If Finish[i] == false, for some i, 1 £ i £ n, then
the system is in deadlock state. Moreover, if
Finish[i] == false, then Pi is deadlocked.

Algorithm requires an order of O(m x n2) operations to
detect whether the system is in deadlocked state.

각 자원타입 당 자원이 여러 개인 경우

7.40 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Example of Detection Algorithm

p Five processes P0 through P4; three resource types
A (7 instances), B (2 instances), and C (6 instances).

p Snapshot at time T0:
Allocation Request Available

A B C A B C A B C
P0 0 1 0 0 0 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3 0 0 0
P3 2 1 1 1 0 0
P4 0 0 2 0 0 2

p Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true
for all i.

각 자원타입 당 자원이 여러 개인 경우

7.41 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Example (Cont.)

p P2 requests an additional instance of type C.
Request

A B C
P0 0 0 0
P1 2 0 1
P2 0 0 1
P3 1 0 0
P4 0 0 2

p State of system?
n Can reclaim resources held by process P0, but insufficient

resources to fulfill other processes; requests.
n Deadlock exists, consisting of processes P1, P2, P3, and

P4.

각 자원타입 당 자원이 여러 개인 경우

7.42 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Detection-Algorithm Usage

p When, and how often, to invoke depends on:
n How often a deadlock is likely to occur?
n How many processes will need to be rolled

back?
p one for each disjoint cycle

p If detection algorithm is invoked arbitrarily, there
may be many cycles in the resource graph and
so we would not be able to tell which of the many
deadlocked processes “caused” the deadlock.

각 자원타입 당 자원이 여러 개인 경우

7.43 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Recovery from Deadlock: Process Termination

p Abort all deadlocked processes.
p Abort one process at a time until the deadlock

cycle is eliminated.
p In which order should we choose to abort?

n Priority of the process.
n How long process has computed, and how

much longer to completion.
n Resources the process has used.
n Resources process needs to complete.
n How many processes will need to be terminated.
n Is process interactive or batch?

각 자원타입 당 자원이 여러 개인 경우

7.44 Silberschatz, Galvin and Gagne ©2007Operating System Concepts– 7th Edition

Recovery from Deadlock: Resource Preemption

p 프로세스종료를통한교착상태회복

n 교착프로세스를모두중지

n 교착상태가제거될때까지한프로세스씩
종료

p Preemption 상태에서의회복
n Selecting a victim – minimize cost.
n Rollback – return to some safe state,

restart process for that state.
n Starvation – same process may always be

picked as victim, include number of
rollback in cost factor.

Operating System Concepts with Java – 7th Edition, Nov 15, 2006 Silberschatz, Galvin and Gagne ©2007

End of Chapter 7

