Chapter 5: CPU Scheduling

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 Silberschatz, Galvin and Gagne ©2007

Chapter 5: CPU Scheduling

Basic Concepts

Scheduling Criteria
Scheduling Algorithms
Multiple-Processor Scheduling
Real-Time Scheduling

Thread Scheduling

Operating Systems Examples
Java Thread Scheduling
Algorithm Evaluation

O O 00000 O O

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.2 Silberschatz, Galvin and Gagne ©2007

Basic Concepts

&J| job scheduling
ttJ| CPU scheduling <=Focus
=J| swapping : Swap In, Swap Out

o CPU-I/0 HAE Z=J|(burst cycle)

= cycle : CPU & & (CPU burst) <--> 1/0 [(I/O burst)
= CPU burst =&
o 1/O bound program : & 22 CPU burst Jt&
o CPU bound program : &2 0Ot== 2! CPU burst Jt&

o CPUAAHZH
m S| A =2 (short-term scheduler) : ready queue 0l A & &4

FIFO(First-In First-Out)#

SELE

Ecl

HECAE

Operating System Concepts with Java — 7th Edition, Nov 15, 2006

5.3 Silberschatz, Galvin and Gagne ©2007

Alternating Sequence of CPU And I/O Bursts

load store
add store CPU burs
read from file
wait for /O I/O burst
store increment
index CPU burs
write to file
wait for /O I/O burst
load store
add store CPU burs
read from file
wait for IO /O burst
L]
L]
[)
54

Operating System Concepts with Java — 7th Edition, Nov 15, 2006

#,

Silberschatz, Galvin and G'agn—e ©2007

Histogram of CPU-burst Times

I/O bound)job
160

=
i
120ﬂ
100
\ Hyperexponential

frequency

” distribution

/

60
\ " CPU boun

40

a
=4
o

\

0 8 16 24 32 40
burst duration (milliseconds)

S0 A,
PU burst?t 22 £=°| 2! CPU burstz /14

HEsd e AL

A

Silberschatz, Galvin and (gagr{e ©2007

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.5

CPU Scheduler

0o CPU Schedulerl & &t

= Selects from among the processes in memory that are ready to
execute, and allocates the CPU to one of them

O CPU scheduling decision time
running -> waiting (0il:1/O request interrupt)
running -> ready (0|: time run out) '
waiting -> ready (0l : /O 2t = interrupt)
halt : non preemptive

o 14} 40 A 8 SchedulingO| > &< nonpreemptive =

=
—
 —
—

HJ Of

2 20l M Scheduling0| Jts& &< : preemptive

Operating System Concepts with Java — 7t Edition, Nov 15, 2006 5.6 Silberschatz, Galvin and Gagne ©2007

CPU Scheduler

n & & (preemptive) A H =
o Sot=H0(timer2 2
0 3% OOIEN Uit Z2MA SIS ER

= HI& & (non preemptive) AH =
o S== ot =R/ K (timer) 1S
0 &2 E£= /0K H= CPUE R

ORI

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.7

#,

Silberschatz, Galvin and (gagr{e ©2007

Dispatcher

0 Dispatcher2| &2

s CPU AMZ2{0I l6H &S T2 KA0IH CPUOI Cf &t
HMORES == 0s

—
;E TT— & B

o Dispatcher2| & &t
m Switching context
m Switching to user mode

m jumping to the proper location in the user program

O Dispatch latency

m DispatcherJt otLIS| 2 NAE

g |8P CIE Z2AHAZL
== AMAGtE UK 22 = Al

Operating System Concepts with Java — 7th Edition, Nov 15, 2006

5.8 Silberschatz, Galvin and Gagne ©2007

Dispatch Latency

intarrupd
processing

process made
available

M— conflicts ——

rasponss interval

Operating System Concepts with Java — 7th Edition, Nov 15, 2006

respanss 1o evaent

————— dispatch latancy ——m

—— dispatch ——m

5.9

P

roal-lime
process

eacLtion
i

Silberschatz, Galvin and Gagn

e ©2007

CPU Scheduling® A5 J|=

O

0| = & (CPU utilization) : 40% ~ 90%
= keep the CPU as busy as possible

X 2l Z(throughput) : &2 Al2tE 22 = T2 N A 2
m # of processes that complete their execution per time unit

Bt2t Al 2H(turnaround time) : system in -> system out Z2 &l Al 2t
= amount of time to execute a particular process

CH 21 Al 2H(waiting time) : ready queueOfl M J|Ctgl Al 2t

= amount of time a process has been waiting in the ready queue

S Y AlZH(response time) : LHatS A AEIUA H SE DXL AlZE
= amount of time it takes from when a request was submitted until the first
response is produced, not output (for time-sharing environment)

Operating System Concepts with Java — 7t Edition, Nov 15, 2006 5.10 Silberschatz, Galvin and Gagne ©2007

Scheduling Algorithms

m FCFS (First-Come First-Served)

m SJF (Shortest-Job-First)

o SRT (Shortest-Remaining-Time)

m Priority Scheduling
o HRN(Highest-Response-ratio Next

" RR (Round Robin)

m Multilevel Queue

» Multilevel Feedback Queue

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.11

Silberschatz, Galvin and éagr{e ©2007

First-Come, First-Served (FCFS) Scheduling

& &2l (First-Come, First-Served) AHE=H

Process Burst Time

P, 24
P, 3

O Suppose that the processes arrive in the order: P, , P, , P,
The Gantt Chart for the schedule is:

P P, P3

o) 24 27 30
m Waiting time for P, =0; P, =24; P;=27
Average waiting time: (0 + 24 + 27)/3 =17

4N ,:v e
Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.12 Silberschatz, Galvin and Gagne ©2007

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order
P,,P;,P,.

0O The Gantt chart for the schedule is:

P>

P3

P

0

= Waiting time for P;=6;P,=0.P;=3
= Average waiting time:

3

6

= Much better than previous case.

O Convoy effect :
= 211 2|S(1/0 Queue 2t Read QueueE JHEN 0 U O A CPU-bound

m FCFS &3H&E

o2 JA(CPUS

AEot=)It US

PSE=1P.SKel

B e B i

CPUS &£HBHO

6+0+3)3=3

=0l XtXIot=)2t /O bound ZZANA(AUHE2Z CPUE &
([} CPU-bound ZZ AIAZ QI I/O bound EZ2 N A &2

£ JOB=

A2 & 2

ANAE 4501 20Xl 21t

Operating System Concepts with Java — 7th Edition, Nov 15, 2006

5.13

UASUE =—otd, =MEJIUHE2ZEM

Silberschatz, Galvin and éagne ©2007

Shortest-Job-First (SJF) Scheduling

Z A MH 246 (Shortest-Job-First) AH =&

0o SJF Scheduling?| &2

= Associate with each process the length of its next CPU burst. Use
these lengths to schedule the process with the shortest time.

O Two schemes:

= nonpreemptive — once CPU given to the process it cannot be
preempted until completes its CPU burst.

= preemptive — if a new process arrives with CPU burst length less than
remaining time of current executing process, preempt. This scheme is
know as the
Shortest-Remaining-Time-First (SRTF).

O SJF is optimal — gives minimum average waiting time for a
~ given set of processes.

Operating System Concepts with Java — 7t Edition, Nov 15, 2006 5.14 Silberschatz, Galvin and Gagne ©2007

Example of Non-Preemptive SJF

Process Arrival Time Burst Time
P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4

A

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.15 Silberschatz, Galvin and Gagne ©2007

Example of Preemptive SJF Preemptive

Process Arrival Time Burst Time
P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4

b

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.16 Silberschatz, Galvin and Gagne ©2007

Example of Preemptive SJF

Process Arrival Time Burst Time
P, 0.0 8
P, 1.0 4
P, 2.0 9
P, 3.0 5

O SJF (preemptive)

Pl PZ I:)4 I:)1 P3

A

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.17 Silberschatz, Galvin and Gagne ©2007

SJF

O SJF is optimal — gives minimum average waiting time for a
given set of processes

long-term schedulingtil E(Z 2 Ml A AlZ2t2 AFE X 6= Xl 0l E)
short-term scheduling 0l = LI& : XtJ| CPU burst Al2F THHO| O 2H R A

AICPUHAE AZHNH= 22 2R

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.18 Silberschatz, Galvin and Gagne ©2007

Prediction of the Length of the Next CPU Burst

CPU burst (t)

"guess” (1))

alpha = 1/2

4N ,:v e
Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.19 Silberschatz, Galvin and Gagne ©2007

Determining Length of Next CPU Burst

O Can only estimate the length

O Can be done by using the length of previous CPU
bursts, using exponential averaging

t, =actual length of n™ CPU burst

. Th41 = predicted value for the next CPU burst
a, O < &héﬂlatn +(1—a)rn.
. Define :

W N =

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.20 Silberschatz, Galvin and Gagne ©2007

Examples of Exponential Averaging

O a=0
" The T Ty
= Recent history does not count.
O o=1
" The = I
= Only the actual last CPU burst counts.
O If we expand the formula, we get:
T =ot+(T-a)at -7+ ...
+1-o)at, -1+ ...
+(1-a)=t 1,
O Since both a and (1 - o) are less than or equal to 1, each
successive term has less weight than its predecessor.

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.21 Silberschatz, Galvin and Gagne ©2007

SJF(Shortest-Job-First) AH =2

_ (nonpreemptive J| &)

0 Job O AISHAIZIO| DIE B MOS A
AEH2 OIAZH0| B CH
o &

m A2 H80| =)

m Starvation 2| Jts

m Job 2| &lHAIZF O

ol

O

J
A
(=

150l JHol 20t

A
Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.22 Silberschatz, Galvin and Gagne ©2007

Priority Scheduling NonPreemptive

O A priority number (integer) is associated with each process

O The CPU is allocated to the process with the highest priority
(smallest integer = highest priority).
= Preemptive
= nonpreemptive

O SJF is a priority scheduling where priority is the predicted next
CPU burst time.

= Problem = Starvation — low priority processes may never execute.

= Solution = Aging — as time progresses increase the priority of the
process.

106710 T2 AT} OIR G 284G K| R 20D 22

Operating System Concepts with Java — 7t Edition, Nov 15, 2006 5.23 Silberschatz, Galvin and Gagne ©2007

Priority Scheduling

Process Burst Time Priority

P1 10 3
P2 1 1

P3 2 4

P4 1 5

P5 5 2

P, |P. P, P, P,
0 1 6 16 18 19

S LIl Al 2 8.2=

A

Silberschatz, Galvin and G:agn—e ©2007

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.24

Round Robin (RR) Preemptive

O Each process gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready
queue.

O If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time in
chunks of at most g time units at once. No process waits
more than (n-1)q time units.

O Performance
= qlarge = FIFO

= g small = g must be large with respect to context switch, otherwise
overhead is too high.
St E = AlIZH0] 2 82 FIFO D
|

Ct
C>
SHElE A0l e Be 2o

u_ﬂ'-
H'D mU
H <2
[]H
(o)
(o)
o
oo

it
cC
it

Operating System Concepts with Java — 7t Edition, Nov 15, 2006 5.25 Silberschatz, Galvin and Gagne ©2007

Example of RR with Time Quantum = 20

Process Burst Time
P, 53
P, 17
P, 68
P, 24

O The Gantt chart is:

P, |P, |P; [P, |P, [Py |P, |P, [P5 |Ps

0 20 37 57 77 97 117 121 134 154 162

O Typically, higher average turnaround than SJF, but
.1, better response.

Silberschatz, Galvin and (gagr{e ©2007

53
Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.26

Time Quantum and Context Switch Time

Context Switch OverheadJt 10|2t1) StCHH,

process time = 10 quantum context
switche
12 0
[0 10
6 1
[0 6 10
1 9

Silberschatz, Galvin and G:agr{e ©2007

5.27

Operating System Concepts with Java — 7th Edition, Nov 15, 2006

u
~

Quantum 2

o Z0]

o DA O} D

o ol 2 ES FIFO 2t s

o M0t et Bl

o X EX: HE=22 Uetd MAEAe -+JF quantum ECF &2
AZHH HelE B2
dEHOCZ, CPU HAES 80%= Quantum ZC+ & 0tOF StCH

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.28 Silberschatz, Galvin and Gagne ©2007

Turnaround Time Varies With The Time Quantum

process

N

()
E
4
e

j

2

O

L

©

c

p—

2
+—

[4b)

(@)

©

R

48]

=

©

3 4 5

time quantum

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.29 Silberschatz, Galvin and Gagne ©2007

SRT(Shortest-Remaining Time) preemptive

0 SRT(Shortest-Remaining-Times First) AH =& : preemptive
= SJF 2 Preemptive)| B o HE

= Dl list &2 job & H0I/U= &AL F=EXIEHE &2 &Y &8

b

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.30 Silberschatz, Galvin and Gagne ©2007

HRN(Highest-Response-ratio Next)nonpreemptive

o HRN(Highest-Response-ratio Next) A H & &
.&W:@pr%ﬂuﬂmﬁi
0 AIBHAIZEOl 21 T2 M AN 22|58 SIF J|BS Be5t)| 98 2402
wDMRHHHmﬁAICDNEP“JW*

S Al&ot O <=t JHE =2 AR ¥2 =22

CHOTAIZE + ABIAALZE
NI A2

Ao | hZIA[ZE | ME|[AAZE
5 5 -B:(10+ 6)/ 6 = 2,67
19 6 —c:{15+?’}f?=3.14
15 7

e LA —r‘T-]?]' ?]-731‘ =2 7

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.31 Silberschatz, Galvin and Gagne ©2007

Multilevel Queue Preemptive

O Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

O Each queue has its own scheduling algorithm,
foreground — RR
background — FCFS

O Scheduling must be done between the queues.

= Fixed priority scheduling; (i.e., serve all from foreground then from
background). Possibility of starvation.

= Time slice — each queue gets a certain amount of CPU time which it can
schedule amongst its processes; i.e., 80% to foreground in RR

= 20% to background in FCFS

Operating System Concepts with Java — 7t Edition, Nov 15, 2006 5.32 Silberschatz, Galvin and Gagne ©2007

Multilevel Queue Scheduling

system processes

batch processes

student processes

lowest priority

#,

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.33 Silberschatz, Galvin and Gagne ©2007

Multilevel Feedback Queue Preemptive

O A process can move between the various queues; aging can
be implemented this way.

O Multilevel-feedback-queue scheduler defined by the following
parameters:

Q@F@Em@nﬁ‘yﬁsmw Java — 7th Edition, Nov 15, 2006 5.34 Silberschatz, Galvin and Gagne ©2007

S
Lo, b
a e “ 2
\ Qi G,
= ‘2 o
\ ,{

number of queues

scheduling algorithms for each queue

method used to determine when to upgrade a process
method used to determine when to demote a process

method used to determine which queue a process will enter when that
process needs service

Example of Multilevel Feedback Queue

O Three queues:
= Q,—time quantum 8 milliseconds

= Q, —time quantum 16 milliseconds
= Q,-FCFS

O Scheduling

= A new job enters queue Q, which is served FCFS. When it gains CPU,
job receives 8 milliseconds. If it does not finish in 8 milliseconds, job is
moved to queue Q;.

= At Q, job is again served FCFS and receives 16 additional milliseconds.
If it still does not complete, it is preempted and moved to queue Q,.

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.35 Silberschatz, Galvin and Gagne ©2007

Multilevel Feedback Queues

bl quantum = 8 ‘7
quantum = 16 s7

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.36 Silberschatz, Galvin and Gagne ©2007

Multilevel Feedback Queue: Preemptive

o0 Z2NHAC ESEA0 Wt Hel

o &2 &0 A4

o102 & 4 (10 EXE SZ0| AFE)
0 CPU-bound/|I0O-bound E ¥2| o<t

O

(B Xt OtehZ 01s)
0 10 bound-job : (&< level 0l A X 2l)

‘. ‘;, -
Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.37 Silberschatz, Galvin and Gagne ©2007

completio

A 4

N

completio

v

N

completio

v

N

completio

Level 1 PPYS e e
(FIFO) % Use
preemptio]
n
(Firo) (oo ,| Use the
(FIFO) o Use
Pl‘eemptio J
N
L€V€| 3 [X X) . USe the
(FIFO) % Use
preemptio J
N
o
o
Level n eoe TUse the
(round e Use
e’ preemptio]
' .-_..f“‘_' ’ %v D

Operating System Concepts with Java — 7th Edition, Nov 15, 2006

5.38

n >

Silberschatz, Galvin and Gagne ©2007

Multiple-Processor Scheduling

O Asymmetric multiprocessing

m OfL}S processor’f scheduling ot 2 E It 77 HE
O Symmetric multiprocessing(SMP)

m =Zfprocessor/f S AtE © £ scheduling

m Load sharing : &= 2| Ready Queue AIE Jts

o Xc2lJ| & akA(Processor Affinity)
0 Load Balancing

s Push: S& A FI|H2= Fot HA
m Pull:#l) A= Z=2AMAUAN OE Z=2MAS] loadE JHAS

I

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.39 Silberschatz, Galvin and Gagne ©2007

Typical SMT architecture

logical | | logical logical | | logical
CPU CPU CPU CPU
physical physical
CPU CPU
system bus

SMT : Symmetric multithreading
- provide multiple logical- rather than
physical- processors

=>Hyperthreading

A

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.40 Silberschatz, Galvin and Gagne ©2007

Hyperthreading : Best Case

E AAABCDD j E AAABCDD j E ABBBCCDD j

o e -

E ABBBCCDD j E AAAABBBBCCCDDDD j

—~ L.
G
A||B||C||D
[AllB||C||D]
2cycle 2kt
=& : 6 cycle Hyperthreading : 4 ¢
=X : http://blog.naver.com/jky

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.41 Silberschatz, Galvin and Gagne ©2007

Hyperthreading : Worst Case

Operating Syst

———

BBBDBBD

i

e

————

BBBEDDBB

J—

-l

-

BIC||D

I

&

10 cycle

09

Atol

L,

BBBDDBB

JC

BBBDBBD j

-l

e

L

BBBBBBBBBBDDDD

]

g

=+overhead

Hyperthreading
http://blog.naver.com/jky ..
»n, Nov 15, 2006

5.42

- =

AllB||C|ID

Silberschatz, Galvin and Gagne ©2007

: 10 cycle

- T

O
D

a9

=
=
®

|>
&2
i
o
=
ol
gl
|>
N
i
o

O 2 job O OF& A

2 job O OF&A
o =AMd&: 2s0|
= Deadline £ Al
" UDAEX B4

» Overhead Jt 2

O

0f0
banl
N

A

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.43 Silberschatz, Galvin and Gagne ©2007

Thread Scheduling

O Local Scheduling — How the threads library
decides which thread to put onto an available

LWP

O Global Scheduling — How the kernel decides
which kernel thread to run next

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.44 Silberschatz, Galvin and Gagne ©2007

Pthread Scheduling API

#include <pthread.h>
#include <stdio.h>

#define NUM THREADS 5

int main(int argc, char *argvl[])

{

inti;
pthread t tid[NUM THREADS];
pthread attr t attr;
[* get the default attributes */
pthread attr init(&attr);
/* set the scheduling algorithm to PROCESS or SYSTEM */
pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM);
[* set the scheduling policy - FIFO, RT, or OTHER */
pthread attr setschedpolicy(&attr, SCHED OTHER);
[* create the threads */
for (i = 0; i < NUM THREADS; i++)
pthread create(&tid[i],&attr,runner,NULL);

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.45 Silberschatz, Galvin and Gagne ©2007

Pthread Scheduling API

/* now join on each thread */
for (i=0; i < NUM THREADS; i++)
pthread join(tid[i], NULL);

}
[* Each thread will begin control in this function */
void *runner(void *param)
{

printf("l am a thread\n");

pthread exit(0);

N ; L.
mtlﬂ@nsyrsmm Java — 7th Edition, Nov 15, 2006 5.46 Silberschatz, Galvin and Gagne ©2007

Java Thread Scheduling

o JVM Uses a Preemptive, Priority-Based Scheduling
Algorithm

o FIFO Queue is Used if There Are Multiple Threads
With the Same Priority

3 ‘)_4 |

.

mtlﬂ@nﬁvsmth Java — 7th Edition, Nov 15, 2006 547 Silberschatz, Galvin and Gagne ©2007

Java Thread Scheduling (cont)

JVM Schedules a Thread to Run When:

1. The Currently Running Thread Exits the Runnable State
2. A Higher Priority Thread Enters the Runnable State

* Note — the JVM Does Not Specify Whether Threads are Time-
Sliced or Not

p)@ﬁ@mﬂ@n‘s,y@mth Java — 7th Edition, Nov 15, 2006 5.48 Silberschatz, Galvin and Gagne ©2007

Time-Slicing

Since the JVM Doesn’t Ensure Time-Slicing, the yield()
Method

May Be Used:

while (true) {
// perform CPU-intensive task

Thread.yield();

This Yields Control to Another Thread of Equal Priority

P)@'F@E'ﬂ@"‘syfsmth Java — 7th Edition, Nov 15, 2006 5.49 Silberschatz, Galvin and Gagne ©2007

Thread Priorities

Priority Comment

Thread.MIN_PRIORITY Minimum
Thread Priority

Thread.MAX_PRIORITY Maximum Thread
Priority

Thread.NORM_PRIORITY Default Thread
Priority

Priorities May Be Set Using setPriority() method:
setPriority(Thread.NORM_PRIORITY + 2);

Operating System Concepts with Java — 7t Edition, Nov 15, 2006 5.50 Silberschatz, Galvin and Gagne ©2007

Scheduler - TP

I**

* Scheduler.java
*/
public class Scheduler extends Thread
{
private CircularList queue;
private int timeSlice;
private static final int DEFAULT_TIME_SLICE =1000; /1=

public Scheduler() {
timeSlice = DEFAULT_TIME_SLICE;
queue = new CircularList();

}

public Scheduler(int quantum) {
timeSlice = quantum;
bl queue = new CircularList();

g VN
- W
Y e P
e \ %

{

Operating System Concepts with Java — 7t Edition, Nov 15, 2006 5.51 Silberschatz, Galvin and Gagne ©2007

Scheduler - TP

/[adds a thread to the queue

public void addThread(Thread t) {
t.setPriority(2);
queue.addltem(t);

}

// this method puts the scheduler to sleep for a time
quantum

private void schedulerSleep() {
try {
Thread.sleep(timeSlice);
} catch (InterruptedException e)

‘ {} ;
A

L3 Ay)

aens N vl
’> " T
L -

o 5. “‘

/)

/

Operating System Concepts with Java — 7t Edition, Nov 15, 2006 5.52 Silberschatz, Galvin and Gagne ©2007

Scheduler - TP

public void run() {
Thread current;
/I set the priority of the scheduler to the highest priority
this.setPriority(6);

while (true) {
current = (Thread)queue.getNext();
if ((current != null) &&
(current.isAlive()) {
current.setPriority(4);
schedulerSleep();
current.setPriority(2);

}
}
}
}

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 5.53 Silberschatz, Galvin and Gagne ©2007

/**
* TestScheduler.java
* This program demonstrates how the scheduler operates.

* This creates the scheduler and then the three example threads.
*/

public class TestScheduler
{
public static void main(String args]]) {
/**
* This must run at the highest priority
* to ensure that it can create the scheduler and the example
* threads. If it did not run at the highest priority, it is
* possible that the scheduler could preemt this and not allow
* it to create the example threads.
*/

Operating System Concepts with Java — 7t Edition, Nov 15, 2006 5.54 Silberschatz, Galvin and Gagne ©2007

Thread.currentThread().setPriority(Thread.MAX_PRIORITY);

scheduler CPUScheduler = new scheduler();
CPUScheduler.start();

TestThread t1 = new TestThread("Thread 1");
t1.start();
CPUScheduler.addThread(t1);

TestThread t2 = new TestThread("Thread 2");
t2.start();
CPUScheduler.addThread(t2);

TestThread t3 = new TestThread("Thread 3");
t3.start();
CPUScheduler.addThread(t3);

Operating System Concepts with Java — 7t Edition, Nov 15, 2006 5.55 Silberschatz, Galvin and Gagne ©2007

