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Threads | 2

O A thread (or lightweight process) is a basic unit of CPU
utilization; it consists of (£ )
thread ID
program counter
register set
stack space

O A thread shares with its peer threads its(= &=
code section
data section
operating-system resources( files ... )
collectively known as a task.

o ZZHA: S ZIZ HIA(HWP;Heavy Weight Process)
- otLISl AHIEE JHE & (task)
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value to the right place.
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func(72,73) called from main().
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STACK SEGMENT < | Sl - A —
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. calls another function) .
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Stack
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Threads

O Process?t Thread2 X}O|

Process A
Process A

Thread 1

pthread_create()
Process B

Data(Global
Variables) Data_(GIobaI
Variables) Process A
Thread 2
Code/Text Data(Global Code/Text
Variables)
Code/Text
Process Thread
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Single and Multithreaded Processes

code

data

files

registers

stack

thread — ;

single-threaded process

code data files
registers ||| registers ||| registers
stack stack stack
i—

— thread

multithreaded process
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Benefits

O Responsiveness

= eg) multi-threaded Web - if one thread is blocked (eg network) another thread
continues (eg display)

O Resource Sharing

= nthreads can share binary code, data, resource of the process (files, crt, ...)

0o Economy
m creating and context switching thread (rather than a process)
m Solaris:  308H 54

o Utilization of MP Architectures

m each thread may be running in parallel on a different processor
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User and Kernel Threads

0 User Thread

= Thread management done by user-level
threads library

= ctOlEddl= HE 2 A& 80| A =2
Hdd AHEE, 222 A

m HE S Solkl 2B, -4 22|t
=Lt S AMAE == =dote AIS A
=2 MY E= LE MY =2t &
AAHEEY HA 2SS
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User and Kernel Threads

O Kernel Thread
= Supported by the Kernel

s HE ==0AM 22l ddd 22l =2l LhE
Mel=er S AHEE E = US

= Examples
- Windows 95/98/NT/2000
- Solaris - o
-TruB4 UNIX 515 Sy yen aace =2 Ho
- BeOS

Jiaan. 4 .
= LINuX
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User and Kernel Threads

O Some are supported by kernel

eg) Windows 95/98/NT Kernel
Solaris — Threads
Digital UNIX

= Others are supported by library —> Threads
eg) POSIX Pthreads

Mach C-threads
Solaris threads

#*%m Some are real-time threads
& s
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Multithreading Models

Mapping user threads to kernel threads:
o Many-to-One
O One-to-One

o Many-to-Many

= Two-level Model : Many-to-Many 22 2| H&

‘l ‘l' -
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Many-to-One

O Many user-level threads mapped to single
kernel thread

O Examples:
m Solaris Green Threads
m GNU Portable Threads g g g

<«——user thread

k ) «=—— kernel thread

43 ,:v s
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One-to-One

O Each user-level thread maps to kernel thread
O Examples

= Windows NT/XP/2000

= Linux

= Solaris 9 and later

<«—— user thread

é é é é «—— kernel thread

1
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Many-to-Many Model

O Allows many user level threads to be mapped to many
kernel threads

O Allows the operating system to create a sufficient
number of kernel threads

= Solaris prior to version 9
= Windows NT/2000 with the ThreadFiber package

S

<—— Kernel thread

silberschatz, Galvin and Gagne ©2007
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Two-level Model

o Similar to M:M, except that it allows a user thread
to be bound to kernel thread

O Examples
= |RIX, HP-UX, Tru64 UNIX, Solaris 8 and earlier

; é «—— yser thread

° ° ° @ <«—— kernel thread
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Thread Library

o POSIX Pthread

0 Wind32 Thread API

O Java thread API

O Linux

A
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Thread Library : Pthread

o POSIX Pthread
= POSIX(IEEE 1003.1c)J)t A& A& =]
M &St = API
o Solaris, Linux, Mac OS X, Tru64 Unix0| A &
o AE A £ = Kernel =& 210|E 2z HESIts
02t Thread= stack2 20|12 AHE=E A2 E I &

1
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Thread Library : Pthread2| 0
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Thread Library : Win32 Thread

O Win32 Thread
= Windows System2| Kernel =& 20|22l
= Pthread J|& 1} R Al
o0 J|2& 92 one-to-one O &

b
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Thread Library : Win32 Thread

The output is:

0
868171493
1177338657
3782005161
4294967295
4294967295
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Thread Library : Java Threads

0O Java threads are managed by the JVM

O Java threads may be created by:
= Implementing the Runnable interface

public interface Runnable

{
}

public abstract void run();

‘. ‘;, -
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Java Threads - Example Program

class MutableInteger
{
private int value;
public int getValue() {
return value;

public void setValue(int value) {
this.value = value;

}
}

c¢lass Summation implements Runnable
{
private int upper;
private MutableInteger sumValue;
public Summation(int upper, MutableInteger sumValue) {
this.upper = upper;
this.sumValue = sumValue;
}
public void run() {
int sum = 0;
for (int i = 0; i <= upper; i++)
sum += 1i;
sumValue.setValue(sum);
}
}

#,
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Java Threads - Example Program

public class Driver
: public static void main(String[] args) {
if (args.length > 0) {
if (Integer.parselnt(args[0]) < 0)
System.err.println(args[0] + " must be >= 0.");
else {
// create the object to be shared
MutableInteger sum = new MutableInteger();
int upper = Integer.parselnt(args[0]);
Thread thrd = new Thread(new Summation(upper, sum));
thrd.start();
try {
thrd. join();
System.out.println
("The sum of "+upper+" is "+sum.getValue());
} catch (InterruptedException ie) { }

}
}

else
System.err.println("Usage: Summation <integer value>");
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Java Thread States

available
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Java Threads - Producer-Consumer

public class Factory

{

public Factory() {
// First create the message buffer.
Channel mailBox = new MessageQueue();

// Create the producer and consumer threads and pass
// each thread a reference to the mailBox object.
Thread producerThread = new Thread(

new Producer(mailBox));
Thread consumerThread = mew Thread(

new Consumer{mailBox));

// Start the threads.
producerThread.start();
consumerThread.start();

}

public static void main(String args[]) {
Factory server = new Factory();

}

Silberschatz, Galvin and G:agn—e ©2007
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Java Threads - Producer-Consumer

class Producer implements Hunnable

{

private Channel mbox;

public Producer (Channel mbox) {
this.mbox = mbox;
}

public veid run() {
Date message;

while (true) {
// nap for awhile
SleepUtilities.nap();

// produce an item and enter it into the buffer
message = new Date();

System.out.println("Producer produced " + message);
mbox.send(message) ;

#,
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Java Threads - Producer-Consumer

class Consumer implements Runnable

{

private Channel mbox;

public Consumer (Channel mbox) {
this.mbox = mbox;
}

public void run() {
Date message;

while (true) {
// nap for awhile
SleepUtilities.nap();

// consume an item from the buffer
message = (Date)mbox.receive();

if (message != npull)
System.out.println("Consumer consumed " + message);

#,
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Threading Issues

Semantics of fork() and exec() system calls
Thread cancellation

Signal handling

Thread pools

Thread specific data

Scheduler activations
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Threading Issues — Semantics of fork() and exec()

0o Multithread EEJ%” A fork()S
threadE MAMHE 2401012 OFLIEH 2
S Aol A A e A2

|'oll

Ct&H, 8t i<

S =¢ct
= mu Ihthread%

o 5 O A&
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Threading Issues — Thread Cancellation

O Terminating a thread before it has
finished

= O£ =8, 6 A ==0] GOl /IOl A
ZAMGICHH 1 S et MY EJ Z2UsE #

n T=8 B2 HM0A AFZ XDt stop2 228t &E

i
0%
I
HU

0 Two general approaches:

= Asynchronous cancellation terminates the target
thread immediately

= Deferred cancellation allows the target thread to
periodically check if it should be cancelled
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Thread Cancellation

Deferred cancellation in Java
Interrupting a thread

Thread thrd = new Thread(new InterruptibleThread());
thrd.start();

"

thrd. interrupt();
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Thread Cancellation

Deferred cancellation in Java
Checking interruption status

class InterruptibleThread implements Runnable

{

FELS

* This thread will continue to run as long

* as it is not interrupted.

*/

public void run() {

while (true) {

FE:
* do some work for awhile
* ,

*/

if (Thread.currentThread().isInterrupted()) {
System.out.println("I’m interrupted!");
break;

}

// clean up and terminate

}
}
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Signal Handling

O Signal
m UnixOlA S8 Event)t 2HSSS 2] 2ol
AME &= 2 (0l Windows Message)
o signal handler? X2l =A
1. Signal0| £ & event(i| 2|oll &=
2. Signal0] S8 ZZ2 AN ML E
3. SignalO| X 2l&

m  ProcessUl A1 2| Signal X 2| & &4 ALEE

Signal0| 8 &E& =& Threadlll 8=
Process®H 0l A= 2= Threadlil & & &

Process 22| Ct== Thread0ll Hl & & &

~1 ProcessOl &%= 2 E Signal2 M2l& 3
ThreadE X &
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Thread Pools

o &A= (fI|ot= T2 Thread=S 0| 2| A4 A oH
== Pool

O Advantages:

=G - 8Z MZ& ThreadE M AG}
0o

A2 L &Mot= ThreadE AIE0tE2 = LhA
i =

n AMAE AR &EH O ot 4 & A : Allows the

number of threads in the application(s) to
be bound to the size of the pool
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Thread Pools

O Java provides 3 thread pool architectures:

1. Single thread executor - pool of size 1.

static ExecutorService newSingleThreadExecutor()

2. Fixed thread executor - pool of fixed size.

static ExecutorService newFixedThreadPool (int nThreads)

3. Cached thread pool - pool of unbounded size

static ExecutorService newCachedThreadFPool ()
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Thread Pools

A task to be serviced in a thread pool

public class Task implements Runnable
{
public void run() {
System.out.println("I am working om a task.");

}
}

#,
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Thread Pools

Creating a thread pool in Java

import java.util.concurrent.*;

public class TPExample

{

public static void main(String[] args) {
int numTasks = Integer.parselnt(args[0].trim());

// create the thread pool
ExecutorService pool = Executors.newCachedThreadPool () ;

// run each task using a thread in the pool
for (int 1 = 0; i < numTasks; i++)
pool.execute(new Task());

/{ Shut down the pool. This shuts down the pool only
// after all threads have completed.
pool.shutdown();

Silberschatz, Galvin and éagr{e ©2007
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Thread Specific Data

O Allows each thread to have its own copy of
data

O Useful when you do not have control over the
thread creation process (i.e., when using a
thread pool)
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Thread Specific Data

Thread-specific data in Java.

class Service

{
private static Threadlocal errorCode =
new ThreadLocal();
public static void tramsaction() {
try {
e
* gome operation where an error may occur
*/
catch (Exception e) {
errorCode.set(a);
}
}
FELS
* pet the error code for this tramsaction
*/
public static Object getErrorCode() {
return errorCode.get();
}
}
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Scheduler Activations

O Scheduler Activation
= Thread library 2t Kernel Thread2| & &2 E

= This communication allows an application to
maintain the correct number kernel threads

o LWP At 24
= M:M and Two-level model=& Ct=2| Kernel

| +——user thread

LWPF | =—— lightweight process

£
| Kk J+=—kemel thread
e
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Scheduler Activations

O upcall in scheduler activation
= Kernel- Thread?t & & = activation=S & &
0 S3& thread Jt S22 [l upcallO| &4
o upcall M 2lJ|l= 0] upcall2 &0} Ct2 threadE activation

m =HE = threadl = X &
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syscall()
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Figure 4.15 Processes and Threads in Solaris [MCDO07]

Silberschatz, Galvin and (gagr{e ©2007



= 3 A Al Al

O Unix2 Solaris@| Thread Xl# Process®l Bl 1
UNIX Process Structure Solaris Process Structure

Solaris replaces
the processor state
block with a list of
LWPs

Figure 4.16 Process Structure in Traditional UNIX and Solaris [LEWI96]
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O Solarisl 2l Thread 2 &

thread create(}

swtch{)

syscall()

preempt {}

wakeup(}

RN

prun(} o pstop() exit(}

Figure 4.17 Solaris Thread States [MCDO07]
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O LinuxOl A2l Process/Thread & &

Figure 4.18 Linux Process/Thread Model

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.46 Silberschatz, Galvin and Gagne ©2007



SAMMH Atdl: Windows XP Threads

O Implements the one-to-one mapping
O Each thread contains
= A thread id
= Register set
= Separate user and kernel stacks
= Private data storage area

O The register set, stacks, and private storage
area are known as the context of the threads
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SAMMH Atdl: Windows XP Threads

ETHREAD
thread start
address
pointer to
parent process KTHREAD
scheduling
and
synchronization
. information
: kernel TEB
stack
= thread identifier
. user
. stack
thread-local
storage
kernel space user space
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SAM M Atdl: Linux Threads

O Linux refers to them as tasks rather than
threads

O Thread creation is done through clone()
system call

O clone() allows a child task to share the
address space of the parent task

(process)
flag meaning
CLORE FS File-system information is shared.
CLONE VM The same memory space is shared.
CLONE SIGHAND Signal handlers are shared.
CLONE FILES The set of open files is shared.
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Thread Programming : Windows(1)
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Thread Programming : Windows(2)

e Z A

[3 * 4] * [4 * 5] -> [3*5] 01l Al
[1*5][1 * 5] [1 * 5]» A E2 Sl
[3*5] S Al At
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Thread Programming : Windows(3)
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0l Al : Thread Echo Server
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0l Al : Thread Echo Server
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