Chapter 4: Threads

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 Silberschatz, Galvin and Gagne ©2007

Chapter 4: Threads

o Overview

O Multithreading Models
O Threading Issues

O Pthreads

O Windows XP Threads
O Linux Threads

O Java Threads

‘. ‘;, -
Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.2 Silberschatz, Galvin and Gagne ©2007

Threads | 2

O A thread (or lightweight process) is a basic unit of CPU
utilization; it consists of (£)
thread ID
program counter
register set
stack space

O A thread shares with its peer threads its(= &=
code section
data section
operating-system resources(files ...)
collectively known as a task.

o ZZHA: S ZIZ HIA(HWP;Heavy Weight Process)
- otLISl AHIEE JHE & (task)

Operating System Concepts with Java — 7t Edition, Nov 15, 2006 4.3 Silberschatz, Galvin and Gagne ©2007

Threads | 2

value to the right place.

0 Process®| 22| —_rl_n_(AU |)
System ngh memory Stack illustrated after the r.a.l.l
func(72,73) called from main().
H[\gh Addrass assuming fune defined by:
env A .
z argv fune(int x, int y) {
Program Stack @) arse i g int a:
mip — frame pointer (for main : .
STACK SEGMENT < | Sl - A —
P main() /* no other auto variables #/
7 5] auto variables for Assumes int = long = char * of
Stack grows doereand stk potiter size .4 and assumes s_tack at h.lgh
(grows downward if func() address and descending down.
. calls another function) .
Possible "hoke” ""“’;;””I ef";z' Expanded view of the stack
. stack growrs
in addrass spaca
Stack
Offset from current main()
Haap grows upeard frame poiater (for o Contents
. func()) variables
o § malloc.o (lib* s0) hbmry‘ﬁmcm?ns i 12 [B | ¥
=z - - » dynamically linked +g = x
= = printf.o (lib*.s0) (usual case) I
Haap r = 4 ra return address
. frame pointer —— 0 mip caller’s frame pointer
e p———— f\'azfablefo}:‘ points here = [gabage | a
heap grawil T g
BSS: zerofiled DATA SEGMENT e » 5 [gabaee | b2
7, brk point =12 garbage b[1]
variables -16 garbage b[0]
Heap stack pointer ——>
Globals and Gotlacarssel (top of stack)
Stalic variables Ll
1D’at3-]' Low Address < All auto variables and parameters
h global variables uninitialized data (bss) are 1'efere'nced via offsets from the
< frame pointer.
Q " d. ? initialized data The frame pointer and stack pointer
Executable code TE;{T SEGMENT are in registers (for fast access).
[iha.rﬂld] = malloc.o (lib*.a) library functions if
2 - — statically linked When funet returns, the return value
‘3— printfo (lib".a) (not usual case) is stored m a register. The stack pointer
= fico is move to the y location, the code
T o func(72.73)| ==—— ra (return address) L _yump-efi to the s:etum_ address (1),
= and the frame pointer 1s set to mip
3 ert0.o (startup routine) (the stored value of the caller’s frame
=':\) . Low memory pointer). The caller moves the return

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.4 Silberschatz, Galvin and Gagne ©2007

Threads

O Process?t Thread2 X}O|

Process A
Process A

Thread 1

pthread_create()
Process B

Data(Global
Variables) Data_(GIobaI
Variables) Process A
Thread 2
Code/Text Data(Global Code/Text
Variables)
Code/Text
Process Thread

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.5 Silberschatz, Galvin and Gagne ©2007

Single and Multithreaded Processes

code

data

files

registers

stack

thread — ;

single-threaded process

code data files
registers ||| registers ||| registers
stack stack stack
i—

— thread

multithreaded process

Operating System Concepts with Java — 7th Edition, Nov 15, 2006

4.6

A

Silberschatz, Galvin and éagr{e ©2007

AdES Ol Ol : & AH

A My TRA A

Y]
Clamy A3 E
2ﬁ—=) zrol A= INE=3 4
/- =)
> odod
[« |
2 H o[X| ZHA|
2= EEET

HEZT A&

EXM: J82E 2= 2EAA

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.7 Silberschatz, Galvin and Gagne ©2007

Benefits

O Responsiveness

= eg) multi-threaded Web - if one thread is blocked (eg network) another thread
continues (eg display)

O Resource Sharing

= nthreads can share binary code, data, resource of the process (files, crt, ...)

0o Economy
m creating and context switching thread (rather than a process)
m Solaris: 308H 54

o Utilization of MP Architectures

m each thread may be running in parallel on a different processor

Operating System Concepts with Java — 7t Edition, Nov 15, 2006 4.8 Silberschatz, Galvin and Gagne ©2007

User and Kernel Threads

0 User Thread

= Thread management done by user-level
threads library

= ctOlEddl= HE 2 A& 80| A =2
Hdd AHEE, 222 A

m HE S Solkl 2B, -4 22|t
=Lt S AMAE == =dote AIS A
=2 MY E= LE MY =2t &
AAHEEY HA 2SS

Operating System Concepts with Java — 7t Edition, Nov 15, 2006 4.9 Silberschatz, Galvin and Gagne ©2007

User and Kernel Threads

O Kernel Thread
= Supported by the Kernel

s HE ==0AM 22l ddd 22l =2l LhE
Mel=er S AHEE E = US

= Examples
- Windows 95/98/NT/2000
- Solaris - o
-TruB4 UNIX 515 Sy yen aace =2 Ho
- BeOS

Jiaan. 4 .
= LINuX

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.10 Silberschatz, Galvin and Gagne ©2007

User and Kernel Threads

O Some are supported by kernel

eg) Windows 95/98/NT Kernel
Solaris — Threads
Digital UNIX

= Others are supported by library —> Threads
eg) POSIX Pthreads

Mach C-threads
Solaris threads

#*%m Some are real-time threads
& s

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.11 Silberschatz, Galvin and Gagne ©2007

Multithreading Models

Mapping user threads to kernel threads:
o Many-to-One
O One-to-One

o Many-to-Many

= Two-level Model : Many-to-Many 22 2| H&

‘l ‘l' -
Operating System Concepts with Java — 7t Edition, Nov 15, 2006 4.12 Silberschatz, Galvin and Gagne ©2007

Many-to-One

O Many user-level threads mapped to single
kernel thread

O Examples:
m Solaris Green Threads
m GNU Portable Threads g g g

<«——user thread

k) «=—— kernel thread

43 ,:v s
Operating System Concepts with Java — 7th Edition, Nov 15, 2006 413 Silberschatz, Galvin and Gagne ©2007

One-to-One

O Each user-level thread maps to kernel thread
O Examples

= Windows NT/XP/2000

= Linux

= Solaris 9 and later

<«—— user thread

é é é é «—— kernel thread

1
Operating System Concepts with Java — 7th Edition, Nov 15, 2006 414 Silberschatz, Galvin and Gagne ©2007

Many-to-Many Model

O Allows many user level threads to be mapped to many
kernel threads

O Allows the operating system to create a sufficient
number of kernel threads

= Solaris prior to version 9
= Windows NT/2000 with the ThreadFiber package

S

<—— Kernel thread

silberschatz, Galvin and Gagne ©2007

Operating System Concepts with Java — 7t Edition; NovT5,

Two-level Model

o Similar to M:M, except that it allows a user thread
to be bound to kernel thread

O Examples
= |RIX, HP-UX, Tru64 UNIX, Solaris 8 and earlier

; é «—— yser thread

° ° ° @ <«—— kernel thread

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.16 Silberschatz, Galvin and Gagne ©2007

Thread Library

o POSIX Pthread

0 Wind32 Thread API

O Java thread API

O Linux

A

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 417 Silberschatz, Galvin and Gagne ©2007

Thread Library : Pthread

o POSIX Pthread
= POSIX(IEEE 1003.1c)J)t A& A& =]
M &St = API
o Solaris, Linux, Mac OS X, Tru64 Unix0| A &
o AE A £ = Kernel =& 210|E 2z HESIts
02t Thread= stack2 20|12 AHE=E A2 E I &

1

ol

IS 7

Lol!

Operating System Concepts with Java — 7t Edition, Nov 15, 2006 4.18 Silberschatz, Galvin and Gagne ©2007

Thread Library : Pthread2| 0

Operating System Concepts with Java — 7t Edition, Nov 15, 2006 . Silberschatz, Galvin and Gagne ©2007

Thread Library : Win32 Thread

O Win32 Thread
= Windows System2| Kernel =& 20|22l
= Pthread J|& 1} R Al
o0 J|2& 92 one-to-one O &

b

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.20 Silberschatz, Galvin and Gagne ©2007

Thread Library : Win32 Thread

The output is:

0
868171493
1177338657
3782005161
4294967295
4294967295

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.21 Silberschatz, Galvin and Gagne ©2007

Thread Library : Java Threads

0O Java threads are managed by the JVM

O Java threads may be created by:
= Implementing the Runnable interface

public interface Runnable

{
}

public abstract void run();

‘. ‘;, -
Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.22 Silberschatz, Galvin and Gagne ©2007

Java Threads - Example Program

class MutableInteger
{
private int value;
public int getValue() {
return value;

public void setValue(int value) {
this.value = value;

}
}

c¢lass Summation implements Runnable
{
private int upper;
private MutableInteger sumValue;
public Summation(int upper, MutableInteger sumValue) {
this.upper = upper;
this.sumValue = sumValue;
}
public void run() {
int sum = 0;
for (int i = 0; i <= upper; i++)
sum += 1i;
sumValue.setValue(sum);
}
}

#,

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.23 Silberschatz, Galvin and Gagne ©2007

Java Threads - Example Program

public class Driver
: public static void main(String[] args) {
if (args.length > 0) {
if (Integer.parselnt(args[0]) < 0)
System.err.println(args[0] + " must be >= 0.");
else {
// create the object to be shared
MutableInteger sum = new MutableInteger();
int upper = Integer.parselnt(args[0]);
Thread thrd = new Thread(new Summation(upper, sum));
thrd.start();
try {
thrd. join();
System.out.println
("The sum of "+upper+" is "+sum.getValue());
} catch (InterruptedException ie) { }

}
}

else
System.err.println("Usage: Summation <integer value>");

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.24 Silberschatz, Galvin and Gagne ©2007

Java Thread States

available

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.25 Silberschatz, Galvin and Gagne ©2007

Java Threads - Producer-Consumer

public class Factory

{

public Factory() {
// First create the message buffer.
Channel mailBox = new MessageQueue();

// Create the producer and consumer threads and pass
// each thread a reference to the mailBox object.
Thread producerThread = new Thread(

new Producer(mailBox));
Thread consumerThread = mew Thread(

new Consumer{mailBox));

// Start the threads.
producerThread.start();
consumerThread.start();

}

public static void main(String args[]) {
Factory server = new Factory();

}

Silberschatz, Galvin and G:agn—e ©2007

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.26

Java Threads - Producer-Consumer

class Producer implements Hunnable

{

private Channel mbox;

public Producer (Channel mbox) {
this.mbox = mbox;
}

public veid run() {
Date message;

while (true) {
// nap for awhile
SleepUtilities.nap();

// produce an item and enter it into the buffer
message = new Date();

System.out.println("Producer produced " + message);
mbox.send(message) ;

#,

Silberschatz, Galvin and G-agn—e ©2007

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.27

Java Threads - Producer-Consumer

class Consumer implements Runnable

{

private Channel mbox;

public Consumer (Channel mbox) {
this.mbox = mbox;
}

public void run() {
Date message;

while (true) {
// nap for awhile
SleepUtilities.nap();

// consume an item from the buffer
message = (Date)mbox.receive();

if (message != npull)
System.out.println("Consumer consumed " + message);

#,

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.28 Silberschatz, Galvin and Gagne ©2007

Threading Issues

Semantics of fork() and exec() system calls
Thread cancellation

Signal handling

Thread pools

Thread specific data

Scheduler activations

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.29 Silberschatz, Galvin and Gagne ©2007

Threading Issues — Semantics of fork() and exec()

0o Multithread EEJ%” A fork()S
threadE MAMHE 2401012 OFLIEH 2
S Aol A A e A2

|'oll

Ct&H, 8t i<

S =¢ct
= mu Ihthread%

o 5 O A&

43
Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.30 Silberschatz, Galvin and Gagne ©2007

Threading Issues — Thread Cancellation

O Terminating a thread before it has
finished

= O£ =8, 6 A ==0] GOl /IOl A
ZAMGICHH 1 S et MY EJ Z2UsE #

n T=8 B2 HM0A AFZ XDt stop2 228t &E

i
0%
I
HU

0 Two general approaches:

= Asynchronous cancellation terminates the target
thread immediately

= Deferred cancellation allows the target thread to
periodically check if it should be cancelled

Operating System Concepts with Java — 7t Edition, Nov 15, 2006 4.31 Silberschatz, Galvin and Gagne ©2007

Thread Cancellation

Deferred cancellation in Java
Interrupting a thread

Thread thrd = new Thread(new InterruptibleThread());
thrd.start();

"

thrd. interrupt();

Operating System Concepts with Java — 7t Edition, Nov 15, 2006 4.32 Silberschatz, Galvin and Gagne ©2007

Thread Cancellation

Deferred cancellation in Java
Checking interruption status

class InterruptibleThread implements Runnable

{

FELS

* This thread will continue to run as long

* as it is not interrupted.

*/

public void run() {

while (true) {

FE:
* do some work for awhile
* ,

*/

if (Thread.currentThread().isInterrupted()) {
System.out.println("I’m interrupted!");
break;

}

// clean up and terminate

}
}

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.33 Silberschatz, Galvin and Gagne ©2007

Signal Handling

O Signal
m UnixOlA S8 Event)t 2HSSS 2] 2ol
AME &= 2 (0l Windows Message)
o signal handler? X2l =A
1. Signal0| £ & event(i| 2|oll &=
2. Signal0] S8 ZZ2 AN ML E
3. SignalO| X 2l&

m ProcessUl A1 2| Signal X 2| & &4 ALEE

Signal0| 8 &E& =& Threadlll 8=
Process®H 0l A= 2= Threadlil & & &

Process 22| Ct== Thread0ll Hl & & &

~1 ProcessOl &%= 2 E Signal2 M2l& 3
ThreadE X &

Operating System Concepts with Java — 7t Edition, Nov 15, 2006 4.34 Silberschatz, Galvin and Gagne ©2007

Thread Pools

o &A= (fI|ot= T2 Thread=S 0| 2| A4 A oH
== Pool

O Advantages:

=G - 8Z MZ& ThreadE M AG}
0o

A2 L &Mot= ThreadE AIE0tE2 = LhA
i =

n AMAE AR &EH O ot 4 & A : Allows the

number of threads in the application(s) to
be bound to the size of the pool

Operating System Concepts with Java — 7t Edition, Nov 15, 2006 4.35 Silberschatz, Galvin and Gagne ©2007

Thread Pools

O Java provides 3 thread pool architectures:

1. Single thread executor - pool of size 1.

static ExecutorService newSingleThreadExecutor()

2. Fixed thread executor - pool of fixed size.

static ExecutorService newFixedThreadPool (int nThreads)

3. Cached thread pool - pool of unbounded size

static ExecutorService newCachedThreadFPool ()

Operating System Concepts with Java — 7t Edition, Nov 15, 2006 4.36 Silberschatz, Galvin and Gagne ©2007

Thread Pools

A task to be serviced in a thread pool

public class Task implements Runnable
{
public void run() {
System.out.println("I am working om a task.");

}
}

#,

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.37 Silberschatz, Galvin and Gagne ©2007

Thread Pools

Creating a thread pool in Java

import java.util.concurrent.*;

public class TPExample

{

public static void main(String[] args) {
int numTasks = Integer.parselnt(args[0].trim());

// create the thread pool
ExecutorService pool = Executors.newCachedThreadPool () ;

// run each task using a thread in the pool
for (int 1 = 0; i < numTasks; i++)
pool.execute(new Task());

/{ Shut down the pool. This shuts down the pool only
// after all threads have completed.
pool.shutdown();

Silberschatz, Galvin and éagr{e ©2007

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.38

Thread Specific Data

O Allows each thread to have its own copy of
data

O Useful when you do not have control over the
thread creation process (i.e., when using a
thread pool)

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.39 Silberschatz, Galvin and Gagne ©2007

Thread Specific Data

Thread-specific data in Java.

class Service

{
private static Threadlocal errorCode =
new ThreadLocal();
public static void tramsaction() {
try {
e
* gome operation where an error may occur
*/
catch (Exception e) {
errorCode.set(a);
}
}
FELS
* pet the error code for this tramsaction
*/
public static Object getErrorCode() {
return errorCode.get();
}
}

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.40 Silberschatz, Galvin and Gagne ©2007

Scheduler Activations

O Scheduler Activation
= Thread library 2t Kernel Thread2| & &2 E

= This communication allows an application to
maintain the correct number kernel threads

o LWP At 24
= M:M and Two-level model=& Ct=2| Kernel

| +——user thread

LWPF | =—— lightweight process

£
| Kk J+=—kemel thread
e

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.41 Silberschatz, Galvin and Gagne ©2007

Scheduler Activations

O upcall in scheduler activation
= Kernel- Thread?t & & = activation=S & &
0 S3& thread Jt S22 [l upcallO| &4
o upcall M 2lJ|l= 0] upcall2 &0} Ct2 threadE activation

m =HE = threadl = X &

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.42 Silberschatz, Galvin and Gagne ©2007

= 3 A Al Al

O SolarisOl Al Thread 2t Process 2| 2|

Operating Syste

21

syscall()

Process
user user
thread thread
Lightweight Lightweight
process (LWP) [| process (LWP)
Kernel Kernel
threacd thread

syscall()

System calls

Kernel

Hardware

m Concepts with Java — 7th Edition, Nov 15, 2006

4.43

Figure 4.15 Processes and Threads in Solaris [MCDO07]

Silberschatz, Galvin and (gagr{e ©2007

= 3 A Al Al

O Unix2 Solaris@| Thread Xl# Process®l Bl 1
UNIX Process Structure Solaris Process Structure

Solaris replaces
the processor state
block with a list of
LWPs

Figure 4.16 Process Structure in Traditional UNIX and Solaris [LEWI96]

Operating System C igne ©2007

= 3 A Al Al

O Solarisl 2l Thread 2 &

thread create(}

swtch{)

syscall()

preempt {}

wakeup(}

RN

prun(} o pstop() exit(}

Figure 4.17 Solaris Thread States [MCDO07]

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.45 Silberschatz, Galvin and Gagne ©2007

= 3 A Al Al

O LinuxOl A2l Process/Thread & &

Figure 4.18 Linux Process/Thread Model

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 4.46 Silberschatz, Galvin and Gagne ©2007

SAMMH Atdl: Windows XP Threads

O Implements the one-to-one mapping
O Each thread contains
= A thread id
= Register set
= Separate user and kernel stacks
= Private data storage area

O The register set, stacks, and private storage
area are known as the context of the threads

Operating System Concepts with Java — 7t Edition, Nov 15, 2006 4.47 Silberschatz, Galvin and Gagne ©2007

SAMMH Atdl: Windows XP Threads

ETHREAD
thread start
address
pointer to
parent process KTHREAD
scheduling
and
synchronization
. information
: kernel TEB
stack
= thread identifier
. user
. stack
thread-local
storage
kernel space user space

Operating System Concepts with Java — 7th Edition, Nov 15, 2006

4.48

&

Silberschatz, Galvin and G'agn—e ©2007

SAM M Atdl: Linux Threads

O Linux refers to them as tasks rather than
threads

O Thread creation is done through clone()
system call

O clone() allows a child task to share the
address space of the parent task

(process)
flag meaning
CLORE FS File-system information is shared.
CLONE VM The same memory space is shared.
CLONE SIGHAND Signal handlers are shared.
CLONE FILES The set of open files is shared.

Operating System Concepts with Java — 7t Edition, Nov 15, 2006 4.49 Silberschatz, Galvin and Gagne ©2007

Thread Programming : Windows(1)

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 . Silberschatz, Galvin and Gagne ©2007

Thread Programming : Windows(2)

e Z A

[3 * 4] * [4 * 5] -> [3*5] 01l Al
[1*5][1 * 5] [1 * 5]» A E2 Sl
[3*5] S Al At

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 . Silberschatz, Galvin and Gagne ©2007

Thread Programming : Windows(3)

Operating System Concepts with Java — 7th Edition, Nov 15, 2006 . Silberschatz, Galvin and Gagne ©2007

0l Al : Thread Echo Server

Operating System Concepts with Java — 7t Edition, Nov 15, 2006 . Silberschatz, Galvin and Gagne ©2007

0l Al : Thread Echo Server

Operating System Concepts with Java — 7t Edition, Nov 15, 2006 . Silberschatz, Galvin and Gagne ©2007

