
Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Chapter 9: Virtual Memory

9.2 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Chapter 9: Virtual Memory

 Background
 Demand Paging
 Copy-on-Write
 Page Replacement
 Allocation of Frames
 Thrashing
 Memory-Mapped Files
 Allocating Kernel Memory
 Other Considerations
 Operating-System Examples

9.3 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

가상메모리개념

 Virtual memory
 프로그램의 block들(페이지또는세그먼트)을
디스크에저장하고있다가, 실행도중수시로이들을
block 별로메모리로적재하거나디스크로교체하는
기법

 가상기억장치관리정책(페이징정책)
 페이징알고리듬에서결정해야하는정책

1) 페이지반입정책(FETCH) : Demand Paging,…
2) 페이지배치정책(PLACEMENT)
3) 페이지교체정책(REPLACEMENT) : LRU,…

 메모리는임의접근장치이므로 PLACEMENT는
문제가되지않고나머지만성능에영향을줌

9.4 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Virtual Memory That is Larger Than Physical Memory



9.5 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Virtual-address Space

Enables sparse address spaces with
holes left for growth, dynamically
linked libraries, etc

9.6 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Shared Library Using Virtual Memory

9.7 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

요구페이징(Demand Paging)

 요구페이징의정의

 프로세스가실행하면서실제로필요로될때만메모리로
페이지를가져오는반입(fetch) 정책
 Lazy swapper – never swaps a page into memory unless page will

be needed

 Page is needed  reference to it
 invalid reference  abort
 not-in-memory  Page Fault  bring to memory

 프로그램이페이지를요청할때그페이지가메모리에미처
적재되지못한경우 Page Fault 발생
 Prefetch를통해해결선반입된페이지가사용되지않는
상황발생

9.8 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Transfer of a Paged Memory to Contiguous Disk Space

9.9 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

요구페이징 : Valid-Invalid Bit
 With each page table entry a valid–invalid bit is associated

(v  in-memory, i  not-in-memory)
 Initially valid–invalid bit is set to i on all entries
 Example of a page table snapshot:

 During address translation, if valid–invalid bit in page table entry
is I  page fault

v
v
v
v
i

i
i

….

Frame # valid-invalid bit

page table

9.10 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Aspects of Demand Paging

 Extreme case – start process with no pages in memory
 OS sets instruction pointer to first instruction of process,

non-memory-resident -> page fault
 And for every other process pages on first access
 Pure demand paging

 Actually, a given instruction could access multiple pages
-> multiple page faults
 Pain decreased because of locality of reference

 Hardware support needed for demand paging
 Page table with valid / invalid bit
 Secondary memory (swap device with swap space)
 Instruction restart

9.11 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Page Table When Some Pages Are Not in Main Memory

9.12 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Steps in Handling a Page Fault

9.13 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Steps in Handling a Page Fault

 1.
 2.
 3.
 4.
 5.
 6.

9.14 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Demand Paging의성능

 Page Fault Rate 0  p  1.0
 if p = 0 no page faults
 if p = 1, every reference is a fault

 Effective Access Time (EAT)
EAT = (1 – p) x memory access

+ p (page fault overhead
+ swap page out
+ swap page in
+ restart overhead)

프로그램은 페이지 부재가 발생할 때마다
디스크에서 그 페이지가 올라올때까지 기다려야 하므로
페이지 부재율(Page Fault)를 낮추지 않으면
프로그램의 수행이 매우 느려짐

9.15 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Demand Paging Example

 Memory access time = 200 nanoseconds
 Average page-fault service time = 8 milliseconds
 EAT = (1 – p) x 200 + p x (8 milliseconds)

= (1 – p) x 200 + p x 8,000,000
= 1x200 – p x 200 + p x 8,000,000
= 200 + p x 7,999,800

 If one access out of 1,000 causes a page
fault(0.0001), then

EAT = 8.2 microseconds.
This is a slowdown by a factor of 40!!

9.16 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Copy-on-Write

 일반적인프로세스
 부모프로세스가자식프로세스를생성할때프로세스
메모리를모두복제하여자식을생성
 자식프로세스생성시간이많이걸림

 Copy-on-Write (COW) :
 부모프로세스와자식프로세스가초기에동일페이지를
공유하도록허용

 두프로세스중한프로세스가공유페이지를수정할때, 그
페이지를복사하여생성

 COW allows more efficient process creation as only
modified pages are copied

9.17 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Copy-on-Write

Before Process 1
Modifies Page C

After Process 1
Modifies Page C

9.18 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

페이지교체알고리즘(Page Replacement)

 페이지교체알고리즘(Page Replacement Algorithm)
 Page Fault가발생하여새로운페이지를메모리로
적재하고자할때빈공간없는경우기존의페이지중하나를
디스크로내리고새페이지를적재하여야함

 이때, 교체될페이지를고르기위해사용되는알고리즘

 알고리즘의종류
 Belady의최적알고리즘(OPT 알고리즘)
 FIFO(First-In First-Out) 알고리즘
 LRU(Least Recently Used) 알고리즘
 LFU(Least Frequently Used) 알고리즘
 NUR(Not Used Recently) 알고리즘

9.19 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Need For Page Replacement

9.20 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Page Replacement

9.21 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Page and Frame Replacement Algorithms

 Frame-allocation algorithm determines
 How many frames to give each process
 Which frames to replace

 Page-replacement algorithm
 Want lowest page-fault rate on both first access and

re-access

 In all our examples, the reference string is
7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

9.22 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Graph of Page Faults Versus
The Number of Frames

초기 가정

9.23 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

First-In-First-Out (FIFO) Algorithm
 Reference string:

7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

 3 frames (3 pages can be in memory at a time
per process)

7

0

1

1

2

3

2

3

0

4 0 7

2 1 0

3 2 1

15 page faults

9.24 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

FIFO Page Replacement

Page Fault : 15

9.25 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

First-In-First-Out (FIFO) Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
 3 frames (3 pages can be in memory at a time per

process)

 4 frames

 Belady’s Anomaly: more frames  more page faults

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

9.26 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

FIFO Illustrating Belady’s Anomaly

주기억장치의 할당량을 늘려주었는데도 불구하고,
page fault가 증가하는 현상

9.27 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Belady의최적알고리즘(OPT)

 정의
 Belady가제안한것으로, 페이지부재를최소화하기위해서
향후가장오랫동안사용되지않을페이지를교체시키는
알고리즘

 성능이가장좋지만프로세스가향후어떤페이지를
필요로할지예측할수없기때문에구현불가능
 다른알고리즘의성능비교알고리즘으로이용

9.28 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Optimal Algorithm
 Replace page that will not be used for longest period

of time
 4 frames example

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 How do you know this?
 Used for measuring how well your algorithm performs

1

2

3

4 6 page
faults

4 5

9.29 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Optimal Page Replacement

Page Fault : 9

9.30 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Least Recently Used (LRU) Algorithm

 개념

 최근에가장오랫동안사용하지않은페이지를
교체하는기법

 LRU 기법의예
 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

5

2

4

3

1

2

3

4

1

2

5

4

1

2

5

3

1

2

4

3

9.31 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

LRU Page Replacement

Page Fault : 12

9.32 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

LRU Algorithm (Cont.)

 LRU 알고리즘의구현방법
 Counter 이용구현방법

 가장최근페이지참조시간을포함한 counter 사용
 페이지교체를위해 counter를검색해야함

 Stack을이용한구현
 keep a stack of page numbers in a double link form:
 Page referenced:

 move it to the top
 requires 6 pointers to be changed

 교체할페이지를찾기위한검색이필요없음

9.33 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Use Of A Stack to Record The Most Recent Page References

9.34 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

ALRU(Approximatiing LRU) Algorithms

 개념
 LRU 기법이 counter또는 stack과같은높은비용을
요구하므로 reference bit를이용한대략적구현방법

 Reference bit
 With each page associate a bit, initially = 0
 When page is referenced bit set to 1
 Replace the one which is 0 (if one exists)

 We do not know the order, however

9.35 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Second-Chance (clock) Page-Replacement Algorithm

가장 오랫동안 주기억 장치에 있던 페이지 중 자주 사용되는 페이지의 교체를
방지하기 위한 것으로 FIFO 기법의 단점을 보완한 기법

1. 교체 대상이 되기전에 참조 비트를 검사하여 1일 경우 한번더 기회를 부여

2. 각 페이지에 프레임을 FIFO순으로 유지시키면서 LRU 근사 알고리즘처럼
참조 비트를 가짐

9.36 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

기타 Counting 기반 Algorithms

 LFU(Least Frequently Used) Algorithm
 사용빈도가가장낮은페이지를교체하는기법

 MFU Algorithm(Most Frequently Used)
 사용빈도가높은페이지를교체하는기법

9.37 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

기타 Algorithms

 NUR(Not Used Recently)
 LRU와비슷한알고리즘으로최근에사용하지않은
페이지를교체하는기법
 최근의사용여부를확인하기위해각페이지마다 2개의
비트를사용, 참조비트와변형비트를사용

 참조비트와변형비트의값에따라순서가결정되고
페이지교체

 NUR 교체순서

9.38 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

페이지할당알고리즘

 페이지프레임들을프로세스들에게분배해주는방법
 균등할당법(Equal Allocation)

 모든프로세스에게똑같은수의프레임을배정하는방법

 비례할당법(Proportional Allocation)
 각프로세스마다다르게할당하는방법

 Priority Allocation

프레임의 할당

9.39 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Global vs. Local Allocation

 Global replacement – process selects a
replacement frame from the set of all frames; one
process can take a frame from another
 But then process execution time can vary greatly
 But greater throughput so more common

 Local replacement – each process selects from
only its own set of allocated frames
 More consistent per-process performance
 But possibly underutilized memory

프레임의 할당

9.40 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Allocation in NUMA

 NUMA = Non-Uniform Memory Access
 메모리가네트워크를통해연결되어있음
 최소지연시간을갖는메모리프레임에할당

http://home.arcor.de/efocht/sched/

9.41 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

스래싱(Thrashing)

 스래싱의정의

 한프로세스가충분한페이지크기를갖지않아
너무자주 page fault가발생하여,

 프로그램수행보다페이지교환에더많은시간이
소요되는현상

 스래싱의원인

 멀티프로그래밍의정도가높아짐에따라 CPU
이용률은높아지게되나, 프로세스당할당된
메모리의페이지프레임수가너무적게되어 Page
Fault가급격하게증가되고,

 이에따라 CPU 이용률이급격하게감소되어역전
현상이발생

9.42 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Thrashing (Cont.)

9.43 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

스래싱(Thrashing) 현상해결방법

 해결방법

 부족한자원을증설

 일부프로세스를중단

 낮은우선순위프로세스를중단

 성능자료의지속적관리및분석으로
임계치를예상하여운영

 페이지부재율을조절하여대처함

 Working Set 방법을이용

9.44 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

구역성(Locality) : 메모리참조에서의구역성
 정의

 실행중인프로세스가일정시간동안
메모리의일정부분만을집중적으로
참조하는경우가발생

 Working Set 이론의기반

 시간구역성

 처음에참조된기억장소가가까운
미래에도계속참조될가능성이높음
 반복(Loop), 스택(Stack), Subroutine,

Counting, 집계(Totaling) 등

 공간구역성

 어떤기억장소가참조되었을때, 그
근처의기억장소가계속참조될
가능성이높음
 배열 순례, 순차적 코드

9.45 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Working-Set Model
 Working Set의정의

 실행중인프로세스가최근 T초동안에참조한페이지들의
집합

 해당프로세스에게할당해주어야할최소한의페이지수를
뜻하며,
 Working Set의크기보다적게페이지프레임을할당해주면
스래싱이발생할수있음

9.46 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Page-Fault Frequency

 More direct approach than WSS
 Establish “acceptable” page-fault frequency

rate and use local replacement policy
 If actual rate too low, process loses frame
 If actual rate too high, process gains frame

9.47 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Working Sets and Page Fault Rates

9.48 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Memory-Mapped Files
 Memory-mapped file I/O allows file I/O to be treated

as routine memory access by mapping a disk block
to a page in memory

 A file is initially read using demand paging
 A page-sized portion of the file is read from the file

system into a physical page
 Subsequent reads/writes to/from the file are treated as

ordinary memory accesses
 Simplifies and speeds file access by driving file I/O

through memory rather than read() and write()
system calls

 Also allows several processes to map the same file
allowing the pages in memory to be shared

9.49 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Memory-Mapped File Technique for all I/O

 Some OSes uses memory mapped files for standard I/O
 Process can explicitly request memory mapping a file via
mmap() system call
 Now file mapped into process address space

 For standard I/O (open(), read(), write(),
close()), mmap anyway
 But map file into kernel address space
 Process still does read() and write()

 Copies data to and from kernel space and user space
 Uses efficient memory management subsystem

 Avoids needing separate subsystem

 COW can be used for read/write non-shared pages
 Memory mapped files can be used for shared memory

(although again via separate system calls)

9.50 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Memory Mapped Files

9.51 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Memory-Mapped Shared Memory
in Windows

9.52 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Allocating Kernel Memory

 Treated differently from user memory

 Often allocated from a free-memory pool
 Kernel requests memory for structures of varying sizes
 Some kernel memory needs to be contiguous

 I.e. for device I/O

9.53 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Buddy System Allocator

9.54 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Slab Allocation

9.55 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Other Issues –페이지크기(Page Size)

 가상메모리에서페이지크기의영향

 페이지크기가작을경우

 페이지단편화가감소되고, 한개의페이지를주기억
장치로이동하는시간이줄어듦

 프로그램 수행에필요한내용만주기억장치에
적재될수있고, 지역성이높아져기억장치효율이
높아짐

 페이지정보를갖는페이지맵테이블의크기가
커지고맵핑속도가늦어짐

 디스크접근횟수가많아져서전체적인입출력시간은
늘어남

 페이지개수가증가

9.56 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Other Issues –페이지크기(Page Size)

 가상메모리에서페이지크기의영향

 페이지크기가클경우

 페이지정보를갖는페이지맵테이블의크기가작아지고,
맵핑속도가빨라짐

 디스크접근횟수가줄어들어전체적인입출력효율성이
증가함

 페이지단편화가증가되고한개의페이지를주기억장치로
이동하는시간이늘어남

 프로그램수행에불필요한내용까지주기억장치에적재될수
있음

Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

End of Chapter 9

