Chapter 5: CPU Scheduling

Operating System Concepts — 8" Edition Silberschatz, Galvin and Gagne ©2009

Basic Concepts

& | job scheduling
©J| CPU scheduling <=Focus

=J| swapping : Swap In, Swap Out

m CPU-I/O HHA E F=D|(burst cycle)

e cycle: CPU & &(CPU burst) <--> I/0 i J[(I/O burst)
e CPU burst 2 &

» /O bound program : &2 &2
» CPU bound program : =2 Otz

S - ed T

m CPU &=

e CHJ| A3 =2{(short-term scheduler) : ready queue0il Af &1 &4

Operating System Concepts — 8t Edition

5.2

PU burst J| &
2! CPU burst J} &

FIFO(First-In First-Out)+

M= R

[[m
Y o

U

2| AE

AN
f d‘w '(-

iy

<l FUL'

Silberschatz, Galvin and Gaghe ©2009

Y Alternating Sequence of CPU and
/O Bursts

&)
L™

Operating System Concepts — 8" Edition

load store
add store
read from file

wait for I/O

store increment
index
write to file

wait for I/O

load store
add store
read from file

wait for 1/O

5.3

> CPU burst

= 1/O burst

CPU burst

S

j I/O burst

= CPU burst

> 1/0O burst

SNy
s

/s AY

Silberschatz, Galvin and Gaghe ©2009

| -
§H
ik /‘f’.

o

Histogram of CPU-burst Times

1/0 bound job
A

=

160

140

120

100 -
Hyperexponential

80 \ distribution
\
\

frequency

60

/

40 (" CPU bound job
. \\ 7

\

1 >
0 8 16 24 32 40
burst duration (milliseconds)

U BEE Ol Al A0l A,

Ct==2| &2 CPU burst2t 2 ==2| 21 CPU burstZ +4&

==> HEH AlEde A2
V-
A !

Operating System Concepts — 8th Edition 5.4 Silberschatz, Galvin and Gagne ©2009

r & CPU Scheduler

m CPU Scheduler? <&

e Selects from among the processes in memory that are ready
to execute, and allocates the CPU to one of them

B CPU scheduling decision time

» running -> waiting (0i|:1/O request interrupt)
» running -> ready (0i|: time run out) '
» waiting -> ready (0l : I/O 2t = interrupt)
» halt : non preemptive

m 1} 40| A B Scheduling0| £ 8 &S : nonpreemptive=

HO Of

B 2= Z220 A Scheduling0| Jts& &< : preemptive

//‘/‘%“_\!

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8t Edition 5.5

@.fg;r(CPU Scheduler

o & (preemptive) AH=E
» SotERI0(timer)2 R
» S7 CIOIEHN THE ZE2 M A SO|et 2R

e H|& & (non preemptive) A=
otE -”O'l(tlmer) =
E=VONHXl H= CPUE =

»

Fu -|>

OR JIm

»

Operating System Concepts — 8t Edition 5.6 Silberschatz, Galvin and Gagne ©2009

o Dispatcher

m Dispatcher2| &2
e CPU AJHEHN 2ol e85 2 A AN AH CPUGI CH et

Hodets == 2=

m Dispatcher2 &g
e switching context
e switching to user mode

e jumping to the proper location in the user program

m Dispatch latency
e Dispatcher)} otLt2] Z2 NAE Aot LHE Z=2 AA 2

_|
=H= AlHot= UIMNA 2RE= A2

Operating System Concepts — 8t Edition 5.7 Silberschatz, Galvin and Gagne ©2009

"""’iﬂ Dispatch Latency

avant respanse 1o evant

ok responsa inferval e

process made
intarrupt available
processing

W—————— dispatch latancy ———m»

raal-lme
rretess

exaciution
-

— conflicts ——wl—— dispatch —m

tima

s
e
f h. <
A A9

Operating System Concepts — 8t Edition 5.8 Silberschatz, Galvin and Gagne ©2009

! CPU Scheduling? A5 JI&

L

2 Z(CPU utilization) : 40% ~ 90%
e keep the CPU as busy as possible

X2l Z(throughput) : &2 Al2tE 22 T2 HA M

e # of processes that complete their execution per time unit

m BtEA| ZHturnaround time) : system in -> system out 2 2l Al Zt
e amount of time to execute a particular process

m [HJ|Al2H(waiting time) : ready queuelll A J|Ctel Al2t
e amount of time a process has been waiting in the ready queue

m SEAIZH(response time) : LH3IE AIABIHIA X SE DX A2t
(

amount of time it takes from when a request was submitted until the first ",
response is produced, not output (for time-sharing environment) //‘5,‘,“ _\'

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8t Edition 5.9

r Scheduling Algorithms

e FCFS (First-Come First-Served)

e SJF (Shortest-Job-First)

» SRT (Shortest-Remaining-Time)

e Priority Scheduling
» HRN(Highest-Response-ratio Next

e RR (Round Robin)

e Multilevel Queue

e Multilevel Feedback Queue

Operating System Concepts — 8t Edition 5.10

p "L £

Silberschatz, Galvin and Gaghe ©2009

: =
(g
4D

L&

o

m CPU Scheduler

Operating System Concepts — 8" Edition 5.1 Silberschatz, Galvin and Gagne ©2009

o,
=

p—

(o V—/ First-Come, First-Served (FCFS) Scheduling

A 8 Hel(First-Come, First-Served) AHEE

Process Burst Time

P, 24
P, 3
® Suppose that the processes arrive in the order: P, , P,,
P3
The Gantt Chart for the schedule is:
Pl P2 PS
0] 24 27 30

e Waiting time for P, =0; P, =24; P,= 27
e Average waiting time: (0 + 24 + 27)/3 = 17

- ke _,-”."LI
A)
2
i \] v.}

Operating System Concepts — 8t Edition 5.12 Silberschatz, Galvin and Gagne ©2009

. o FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order
Pz, P3, P1 []
B The Gantt chart for the schedule is:

P, P3 P,

0 3 6 30

e Waiting time for P,=6,P,=0.P;=3
e Average waiting time: (6 +0+3)/3=3
e Much better than previous case.

m Convoy effect :

e FCFS AHZEZ 2125 (1/0 Queue2t Read QueueS JHE) 0 /UL Al CPU-
bound Z 2 A A(CPUZ 20| Xt XI5H=)%t /O bound Z2 A A(AHEO 2
CPUE &) AtEdt=)0t /12 [CPU-bound Z2 HlA 2 216l I/O bound
T2 MAII RS2 CPUL &0tz JOBE 228 = USUHE = Fotd, =NE

JICIRIC2 M MBIEOl A|AE 850| YOXs S Ve <

%
5
v
A

g

~$77 Shortest-Job-First (SJF) Scheduling
XA &Y M (Shortest-Job-First) AHEE
m SJF Scheduling2 & 2|

e Associate with each process the length of its next CPU burst. Use these
lengths to schedule the process with the shortest time.

®m Two schemes:

e nonpreemptive — once CPU given to the process it cannot be preempted
until completes its CPU burst.

e preemptive — if a new process arrives with CPU burst length less than
remaining time of current executing process, preempt. This scheme is
know as the

Shortest-Remaining-Time-First (SRTF).

,L_,-/‘/.-L-?" 3 *:_\

Operating System Concepts — 8t Edition 5.14 Silberschatz, Galvin and Gagne ©2009

B

-

gg"::ﬁ Example of SJF(Non-preemptive)

Process

Burst Time

6

8
7
3

P,

P1
P2
P3
P4
m SJF scheduling chart
P4
0 3

16

® Average waitingtime=(3+16+9+0)/4=7

Operating System Concepts — 8t Edition

5.15

‘i- ~ %
A
= e

/‘»_A._{
I W
—hdlla

- -
-l

Silberschatz, Galvin and Gaghe ©2009

o SJF

m SJF is optimal — gives minimum average waiting time for a given set
of processes

long-term schedulinglil ES(ZZ M A AI2H2] A2 XL OIS X 01 2)

short-term scheduling 0ll= LI& : XtJ] CPU burst Al 2 T2 0] HH KA

I CPUHAE A0S 28 &

FO

= # . "_:KT; . ‘\‘!
{ \ v. =
sl <

Operating System Concepts — 8t Edition 5.16 Silberschatz, Galvin and Gagne ©2009

gf‘;‘? Prediction of the Length of the
rdh Next CPU Burst

4
2
time ———
CPU burst (1) 6 4 6 4 13 13 13
"guess” (1) 10 8 6 6 5 9 11 12

Operating System Concepts — 8t Edition 5.17 Silberschatz, Galvin and Gaghe ©2009

‘*-{:-j Determining Length of Next CPU Burst

m Can only estimate the length — should be similar to the
previous one

e Then pick process with shortest predicted next CPU burst

® Can be done by using the length of previous CPU bursts, using
exponential averaging

1. t, = actual length of n™" CPU burst

2. 7., =predicted value for the next CPU burst
3. a,0<a <1

4. Define :

T . =at +(‘I—a)z'n.

® Commonly, a set to %2 T

® Preemptive version called shortest-remaining-time-first et 2 =4

Operating System Concepts — 8t Edition 5.18 Silberschatz, Galvin and Gagne ©2009

=

_ /}ﬁ(‘.m%j-)‘* . .
~“%77 Examples of Exponential Averaging

m a=0
® The1t = Ty
e Recent history does not count
" a=1
* Ty =al
e Only the actual last CPU burst counts
m If we expand the formula, we get:
Tpg=at +(1 -0 £,-1 + ...
+1-o)fol, +..
+1-a)+,

® Since both o and (1 - o) are less than or equal to 1, each
successive term has less weight than its predecessor

AR
AN
f d‘w -{-
¢ A
“ll A

Operating System Concepts — 8t Edition 5.19 Silberschatz, Galvin and Gagne ©2009

. N
~
2 m!’hj
é il .

.’,} i

Example of Shortest-remaining-time-first

Preemptive SJF

® Now we add the concepts of varying arrival times and preemption to
the analysis

Process Arrival Time Burst Time
P, 0 8
P, 1 4
P, 2 9
P, 3 5
m Preemptive SJF Gantt Chart
P, P, P, P, P,

0

® Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5

1

Operating System Concepts — 8t Edition

5

10

5.20

17

26

1 =2 R
_____ - /"'3/,2;, B
“ A%

Silberschatz, Galvin and Gaghe ©2009

~“$¥7 Example of Preemptive SJF
Process Arrival Time Burst Time
P, 0.0 8
P, 1.0 4
P, 2.0 9
P, 3.0 5

m SJF (preemptive)

e Average waiting time = ?

Operating System Concepts — 8t Edition 5.21 Silberschatz, Galvin and Gagne ©2009

= 2|

m Job 9 2 §>”AI?_FOI A 2 A S KE
m AAEHA HIIAIZ2H0] 3L
[E”é*:

o ANZ=E PE0| 2It=s
e Starvation 2 Jts4&
e Job 2 AAHAIZL IS0l HE 2=

Operating System Concepts — 8" Edition 5.22 Silberschatz, Galvin and Gagne ©2009

N

B~
,ﬂ’."‘-!’hl
@«

! Priority Scheduling rerreemptive

m A priority number (integer) is associated with each process
® The CPU is allocated to the process with the highest priority
(smallest integer = highest priority).
e Preemptive
e nonpreemptive

m SJF is a priority scheduling where priority is the predicted next CPU
burst time.

e Problem = Starvation — low priority processes may never execute.
e Solution = Aging — as time progresses increase the priority of the process.

2% 119738 MITS| IBM 70945 HI2H & [,
1967E 2 T2 MIADE OIAE =X et s &2A!

- //:;;ﬁ:!

Operating System Concepts — 8t Edition 5.23 Silberschatz, Galvin and Gagne ©2009

.
e O Example of Priority Scheduling
Process Burst Time Priority
P, 10 3
P, 1 1
P, 2 4
P, 1 5
P; 5 2

0 1 6 16 18 19

® Average waiting time = 8.2 msec

- A _," o Y A
S S)
7 NS
i \] v. =
sl Lt

Operating System Concepts — 8t Edition 5.24 Silberschatz, Galvin and Gagne ©2009

-
ﬂﬂ"-!’hl

5 Round Robin (RR)

B Time Quantum:

e Each process gets a small unit of CPU time (time quantum q), usually
10-100 milliseconds. After this time has elapsed, the process is
preempted and added to the end of the ready queue.

m If there are n processes in the ready queue and the time
quantum is g, then each process gets 1/n of the CPU time in
chunks of at most g time units at once. No process waits more

than (n7-1)qg time units.
® Timer interrupts every quantum to schedule next process

®m Performance

» EEE= A0l 2 B2 FIFOJIE Ut €013
» YL = A0 A2 R W e 2 QY6 SO A= A
S0

Operating System Concepts — 8t Edition 5.25 Silberschatz, Galvin and Gagne ©2009

N

e : :
~%77 Example of RR with Time Quantum =4

Process Burst Time
P, 24
P, 3
P, 3

B The Gantt chart is:

P, P, P, P, P, P, P, P,

0 4 7 10 14 18 22 26 30

m Typically, higher average turnaround than SJF, but better
response

e ¢ should be large compared to context switch time

e q usually 10ms to 100ms, context switch < 10 usec /%‘Ff’
Operating System Concepts — 8" Edition 5.26 Silberschatz, Galvin and Gagne ©2009

q-.—..l%
*""” Time Quantum and Context Switch Time

Context Switch OverheadJ} 10|2tJd StCHH,

process time = 10 quantum context
switches
12 0
0 10
6 1
0 6 10
1 9

Operating System Concepts — 8t Edition 5.27 Silberschatz, Galvin and Gagne ©2009

r @ Quantum 2| 37|

m 20|

m A O JrHA

B (fHo]l 2 EF FIFO 2t =<

B N0 = &Y uet0] gl

B XAEX:HE22 USE AFS X2 27 I quantum 20 2 Al 2H0|
Xeld 8%

ZEHO=Z, CPU HAEL 80%= Quantum £ Ct & O+0f

o
QO

- __“ ‘r_.‘- A\
- —|
£ P \
U 1

Operating System Concepts — 8t Edition 5.28 Silberschatz, Galvin and Gagne ©2009

(™ Turnaround Time Varies With
| The Time Quantum

12.5

12.0

11.5

11.0

10.5

10.0

average turnaround time

9.5

9.0

Operating System Concepts — 8" Edition

process | time
P, 6
Ps 3
Ps 1
P, 7

ZN

1 2

3

4 5 6
time quantum

5.29

7

80% of CPU bursts should
be shorter than g

4 W

Silberschatz, Galvin and Gaghe ©2009

“%77 HRN(Highest-Response-ratio Nextyr

B HRN(Highest-Response-ratio Next) A~} =&
o SIFEX2jobS NLIXIH &5

» AHAIZH0] 21 2= AIAN =2let SIF 8= E=tot)| ?let 2=
CHOTAIZEOE MBIA AlI2ES 01 E0t= DI -

o RU=RAE HAMGIH O =M HE =2 ARH X2 =22 =R 20
CHOIAIZE + ATHIAAIZH
o 2H= =
EESYEL

e BB P R T By e - A+ 5 /5=2

A 5 5 -B:(10+ 6) /6 =267

= 19 6 -C:(15+ 7/ 7=2314

C 15 7 - ;

D 0 3 -D:(20+ 8) /8 =235

% A7 M 2 A2 D

Operating System Concepts — 8" Edition 5.30 Silberschatz, Galvin and Gagne ©2009

N

/:"W!,hj_,i . N
5 Multilevel Queue preempive

® Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

m Each queue has its own scheduling algorithm,

foreground — RR
background — FCFS

m Scheduling must be done between the queues.

e Fixed priority scheduling; (i.e., serve all from foreground then from
background). Possibility of starvation.

e Time slice — each queue gets a certain amount of CPU time which it can
schedule amongst its processes; i.e., 80% to foreground in RR

e 20% to background in FCFS

B = B
[4 %‘f
A9 "

Operating System Concepts — 8t Edition 5.31 Silberschatz, Galvin and Gagne ©2009

Multilevel Queue Scheduling

highest priority

> interactive editing processes —
E— batch processes E—
— student processes E—

lowest priority

T X
- - - ; -y 52/

Operating System Concepts — 8t Edition 5.32 Silberschatz, Galvin and Gagne ©2009

57 Multilevel Feedback Queue

m A process can move between the various queues; aging can
be implemented this way

® Multilevel-feedback-queue scheduler defined by the
following parameters:

e number of queues

e scheduling algorithms for each queue

e method used to determine when to upgrade a process
e method used to determine when to demote a process

e method used to determine which queue a process will enter when
that process needs service

=

Operating System Concepts — 8t Edition 5.33 Silberschatz, Galvin and Gagne ©2009

N

B~
= m!’hj

=377 Example of Multilevel Feedback Queue

® Three queues:
e @, - RR with time quantum 8 milliseconds

e @, - RR time quantum 16 milliseconds
® 02 - FCFS

® Scheduling
e A new job enters queue Q,which is served FCFS
» When it gains CPU, job receives 8 milliseconds
» If it does not finish in 8 milliseconds, job is moved to queue Q,

e At Q, job is again served FCFS and receives 16 additional
milliseconds

» If it still does not complete, it is preempted and moved to queue
Q,

B = B
0
A9 "

W

Operating System Concepts — 8t Edition 5.34 Silberschatz, Galvin and Gagne ©2009

& Multilevel Feedback Queues

>{ quantum = 8

guantum = 16

=
-

FCEFS

L

Operating System Concepts — 8t Edition

5.35

Silberschatz, Galvin and Gaghe ©2009

“»>'Multilevel Feedback Queue: Preemptive

T NAL S0l WHek Xl
MO KO A

10 FIF2 &0 RAH (10 2 XIE S0 AIR)
CPU-bound / 10-bound £ & 2| o<t
AH

CPU bound-job : H &R F=2] &
(B Xt Otel 2 01)

® 10 bound-job : (&% level 0l Al X 2l)

4 Ly S
/i \

fid

Py
X (,5 'l"f
completion
Level 1 coe cce | Use the R
(FIFO) | cpu]
preemption J
completion
Level 2 o®o® oo > Use the >
(FIFO) | cpPU]
preemption J
completion
Level 3 coe oo | Use the .
(FIFO) | cpPU]
preemption J
0
0
0
C completion
Level n b oo® oo » Use the >
(round robin) | CPU j
preemption j
4 ¥
Operating System Concepts — 8t Edition 5.37 Silberschatz, Galvin and Gaghe ©2009

r & Thread Scheduling

m Distinction between user-level and kernel-level threads

e When threads supported, threads scheduled, not processes

® Many-to-one and many-to-many models, thread library
schedules user-level threads to run on LWP

e Known as Process-Contention Scope (PCS) since scheduling
competition is within the process

e Typically done via priority set by programmer

m Kernel thread scheduled onto available CPU is System-
Contention Scope (SCS) — competition among all threads in S
system //-5,.; S

Operating System Concepts — 8t Edition 5.38 Silberschatz, Galvin and Gagne ©2009

A
y

-

%7 Multiple-Processor Scheduling

m Asymmelric multiprocessing

o Of/LIS processor’f scheduling o/ 2 F /2 &= HE
m Symmetric multiprocessing(SMP)

o 2/ processor’f =A}&5 2 < scheduling

e Load sharing: == 2| Ready Queue AlE Jis

B XclJ| & stA(Processor Affinity)
e CPU corell cache &&42 =0|J| ?dll 22 coreE &Sot= A
e Hard Affinity, Soft Affinity

® Load Balancing
e Push: S& EHA DI =IIEHLZ 2061 H At
o Pull:) A= ZE2AA0MNLCIHE Z2AMA 2 loadE JHES

//'%M\!

Operating System Concepts — 8t Edition 5.39 Silberschatz, Galvin and Gagne ©2009

S NUMA and CPU Scheduling

CPU CPU

\ 0
fast access Waoc fast access
@SS

memory memory

computer

Note that memory-placement algorithms can also consider
affinity

Operating System Concepts — 8" Edition 5.40 Silberschatz, Galvin and Gagne ©2009

5 Multicore Processors

B Recent trend to place multiple processor cores on same
physical chip

m Faster and consumes less power

® Multiple threads per core also growing

e Takes advantage of memory stall to make progress on another thread
while memory retrieve happens

Operating System Concepts — 8t Edition 5.41 Silberschatz, Galvin and Gagne ©2009

N

B~
= W!’N_L

-/’

- Multicore Processors

® There are two ways to multi-thread a processor:

e Coarse-grained multithreading switches between threads only when one
thread blocks, say on a memory read. Context switching is similar to
process switching, with considerable overhead.

e Fine-grained multithreading occurs on smaller regular intervals, say on the
boundary of instruction cycles. However the architecture is designed to
support thread switching, so the overhead is relatively minor.

,L_,-/‘/.-L-?" 3 *:_\

Operating System Concepts — 8" Edition 5.42 Silberschatz, Galvin and Gagne ©2009

~“$¥7 Multithreaded Multicore System

C compute cycle W\ memory stall cycle
threao _ NS M C M c M c M
B
time
Bwaad, -l e M e M e M o
theas .| & M c M c M c
time

A

Operating System Concepts — 8" Edition 5.43 Silberschatz, Galvin and Gagne ©2009

‘%fégvf’ Hyperthreading : Best Case

E AAABCDD

J

s

E ABBBCCDD

B

DOBE

28t : 6 cycle

=X : http://blog.naver.com/jky

Operating System Concepts — 8" Edition

5.44

E AAABCDD

i ¢l

ABBBCCDD j

e

- L

E AAAABBBBCCCDDDD j

-~ =

[»

B

C

o]

Hyperthreading : 4 cycle

A pA
Silberschatz, Galvin and Gaghe ©2009

Hyperthreading : Worst Case

BBBDBBD j

-l

—

g

BBBDDBB

—

S

-l

"

A(B||C||D

Operating System Con

28t : 10 cycle

E BBBDDBB j E BBBDBBD j

-~ -~
E BBBBBBBBBBDDDD j
-~ L
[A Bl C D]

=)

00

At S+overhead

=X : http://blog.naver.com/jky

5.45

Hyperthreading : 10 cycle
Silberschatz, Galvin and Gagne ©200

o N

B~
ﬁ,m!’hj

“»77 Virtualization and Scheduling

®m Virtualization software schedules multiple guests onto CPU(s)

® Each guest doing its own scheduling
e Not knowing it doesn’t own the CPUs
e Can result in poor response time
e Can effect time-of-day clocks in guests

® Can undo good scheduling algorithm efforts of guests

Operating System Concepts — 8" Edition 5.46 Silberschatz, Galvin and Gagne ©2009

5 Operating System Examples

®m Solaris scheduling
® Windows XP scheduling
® Linux scheduling

Operating System Concepts — 8t Edition 5.47 Silberschatz, Galvin and Gagne ©2009

N

Py

Solaris

®m Priority-based scheduling

B Six classes available

Time sharing (default)
Interactive

Real time

System

Fair Share

Fixed priority

®m Given thread can be in one class at a time

m Each class has its own scheduling algorithm

® Time sharing is multi-level feedback queue

Loadable table configurable by sysadmin

Operating System Concepts — 8t Edition 5.48

p—— _,/f'/;;;’_ ‘.‘\ !
L OBS
Silberschatz, Galvin and Gaghe ©2009

(s 's Di
< Solaris Dispatch Table

- s

time return
time quantum from

priority quantum expired sleep
0 200 0 50
5 200 0 50
10 160 0 51
15 160 5 51
20 120 10 52
25 120 15 52
30 80 20 53
35 80 25 54
40 40 30 55
45 40 35 56
50 40 40 58
55 40 45 58
59 20 49 59

A

Operating System Concepts — 8" Edition 5.49 Silberschatz, Galvin and Gagne ©2009

&f.g;—a Solaris Scheduling

global scheduling
priority order
F 3 169 F 3
highest first
J interrupt threads
160
159
realtime (RT) threads
100
99
system (SYS) threads
60
59 | fair share (FSS) threads
fixed priority (FX) threads
timeshare (TS) threads
lowest v 0 interactive (IA) threads 3 last

Operating System Concepts — 8t Edition 5.50 Silberschatz, Galvin and Gagne ©2009

=

B~
&f = mphj

o Solaris Scheduling (Cont.)

m Scheduler converts class-specific priorities into a per-thread global
priority

e Thread with highest priority runs next

e Runs until (1) blocks, (2) uses time slice, (3) preempted by higher-priority
thread

e Multiple threads at same priority selected via RR

i
= - . tﬁ ‘\\!
/ = ’w- -{-
¢ A
L ~hdlie

Operating System Concepts — 8t Edition 5.51 Silberschatz, Galvin and Gagne ©2009

57 Windows Scheduling

Windows uses priority-based preemptive scheduling
Highest-priority thread runs next
Dispatcheris scheduler

Thread runs until (1) blocks, (2) uses time slice, (3) preempted by
higher-priority thread

Real-time threads can preempt non-real-time
32-level priority scheme

Variable class is 1-15, real-time class is 16-31
Priority 0 is memory-management thread
Queue for each priority

If no run-able thread, runs idle thread

,L_,-/‘/.-L-?" 3 *:_\

Operating System Concepts — 8t Edition 5.52 Silberschatz, Galvin and Gagne ©2009

Windows Priority Classes

Win32 API identifies several priority classes to which a process can
belong

e REALTIME_PRIORITY_CLASS, HIGH_PRIORITY_CLASS,
ABOVE_NORMAL_PRIORITY_CLASS,NORMAL_PRIORITY_CLASS,
BELOW_NORMAL_PRIORITY_CLASS, IDLE_PRIORITY_CLASS

e All are variable except REALTIME

A thread within a given priority class has a relative priority

e TIME_CRITICAL, HIGHEST, ABOVE_NORMAL, NORMAL, BELOW_NORMAL,
LOWEST, IDLE

Priority class and relative priority combine to give numeric priority
Base priority is NORMAL within the class

If quantum expires, priority lowered, but never below base

If wait occurs, priority boosted depending on what was waited for

AN

Foreground window given 3x priority boost =

W

Operating System Concepts — 8th Edition 5.53 Silberschatz, Galvin and Gagne ©2009

™
7 Windows XP Priorities
;Iel"ﬁle high ﬁlo)?:'\eal normal :glr?nvgl ::()jrliirity
time-critical 8l 5 1S 15 15 5
highest 26 15 12 10 8 6
above normal 215 14 11 9 7/ 5
normal 24 13 10 8 6 4
below normal 23 12 9 7 5 3
lowest 22 1 8 6 4 2
idle 16 1 1 1 1 1
Operating System Concepts — 8t Edition 5.54 Silberschatz, Galvin and Gagne ©2009 ..

- ._‘ ‘r_"' Ll
> ey Al
£ b \
sl --I.H' 2

y e
‘%» ot
% .'

] Linux Scheduling

Constant order O(1) scheduling time

Preemptive, priority based

Two priority ranges: time-sharing and real-time

Real-time range from 0 to 99 and nice value from 100 to 140

Map into global priority with numerically lower values
indicating higher priority

Higher priority gets larger q
Task run-able as long as time left in time slice (active)

m If no time left (expired), not run-able until all other tasks use
their slices

® All run-able tasks tracked in per-CPU runqueue data

structure
e Two priority arrays (active, expired) f««m\
e Tasks indexed by priority SIS "&.wﬁ_f

operating System d®ncdMN@NER@MMore active, arrayssare exchanged Silberschatz, Galvin and Gagne ©2009

N

B~
= m!’hj

-/’

g Linux Scheduling (Cont.)

m Real-time scheduling according to POSIX.1b
e Real-time tasks have static priorities

m All other tasks dynamic based on nice value plus or minus 5
e Interactivity of task determines plus or minus
» More interactive -> more minus
e Priority recalculated when task expired
e This exchanging arrays implements adjusted priorities

B = B
0
A9 "

W

Operating System Concepts — 8t Edition 5.56 Silberschatz, Galvin and Gagne ©2009

S Priorities and Time-slice length

numeric relative time
priority priority quantum

0 highest 200 ms

° real-time
: tasks
Q9
100

: other
tasks

140 lowest 10 ms

WS

APt

el i
Operating System Concepts — 8t Edition 5.57 Silberschatz, Galvin and Gagne ©2009

P List of Tasks Indexed
2 According to Priorities
active expired
array array
priority task lists priority task lists
[O] O—0O [0] O—0—0
[1] O——C——=0 [1] @
[140] O [140] O—O

Operating System Concepts — 8" Edition

5.58

el
Silberschatz, Galvin and Gaghe ©2009

End of Chapter 5

Operating System Concepts — 8" Edition Silberschatz, Galvin and Gagne ©2009

7 Algorithm Evaluation

® How to select CPU-scheduling algorithm for an OS?

® Determine criteria, then evaluate algorithms

® Deterministic modeling
e Type of analytic evaluation

e Takes a particular predetermined workload and defines the
performance of each algorithm for that workload

Operating System Concepts — 8t Edition 5.60 Silberschatz, Galvin and Gagne ©2009

N

B~
= ﬂﬂﬁvhl

-f’

<5 Queueing Models

B Describes the arrival of processes, and CPU and I/O bursts
probabilistically

e Commonly exponential, and described by mean
e Computes average throughput, utilization, waiting time, etc
m Computer system described as network of servers, each with queue
of waiting processes
e Knowing arrival rates and service rates
e Computes utilization, average queue length, average wait time, etc

Operating System Concepts — 8t Edition 5.61 Silberschatz, Galvin and Gagne ©2009

r. & Little’s Formula

n = average queue length
W = average waiting time in queue
A = average arrival rate into queue

Little’s law — in steady state, processes leaving queue must equal
processes arriving, thus
n=Ax W

e Valid for any scheduling algorithm and arrival distribution

® For example, if on average 7 processes arrive per second, and
normally 14 processes in queue, then average wait time per process
= 2 seconds

ey
_/C‘;;]ﬁ;!

Operating System Concepts — 8t Edition 5.62 Silberschatz, Galvin and Gagne ©2009

r & Simulations

® Queueing models limited

® Simulations more accurate
e Programmed model of computer system
e Clock is a variable
e Gather statistics indicating algorithm performance
e Data to drive simulation gathered via
» Random number generator according to probabilities
» Distributions defined mathematically or empirically
» Trace tapes record sequences of real events in real systems

p—— _,/f'/;;;’_ ‘.‘\ !
L OBS
Silberschatz, Galvin and Gaghe ©2009

Operating System Concepts — 8t Edition 5.63

= Evaluation of CPU Schedulers

by Simulation
_ _ performance
simulation - statistics
B for FCFS
FCES
CPU 10
/0 213
actual CPU 12 performance
process —(1/O 112 s simulation —=» statistics
execution CPU 2 B for SJF
/O 147
SJF
CPU 173
trace tape
performance

simulation —> statistics

B = for BR (g = 14)
RR (g = 14)

Operating System Concepts — 8t Edition 5.64 Silberschatz, Galvin and Gaghe ©2009

g7 Implementation

® Even simulations have limited accuracy
m Just implement new scheduler and test in real systems
® High cost, high risk
® Environments vary
® Most flexible schedulers can be modified per-site or per-system
Or APIs to modify priorities
But again environments vary

S _ -.-:I‘_]
p A‘-{
4 Ly S
i A%%

Operating System Concepts — 8t Edition 5.65 Silberschatz, Galvin and Gagne ©2009

@ 5.08

i
- s

logical logical logical logical
CPU CPU CPU CPU
physical physical
CPU CPU
system bus

Operating System Concepts — 8t Edition 5.66 Silberschatz, Galvin and Gagne ©2009

'S

Y\

b
)

In-5.7

-

7\

0 10 39 42 49 61

A 29
Operating System Concepts — 8" Edition 5.67 Silberschatz, Galvin and Gagne ©2009

W
>\
4

IN-5.8

7\

-

Operating System Concepts — 8" Edition 5.68 Silberschatz, Galvin and Gagne ©2009

= s

O 10 20 23 30 40 50 52 61

Operating System Concepts — 8" Edition 5.69 Silberschatz, Galvin and Gagne ©2009

- N

S -
35 Dispatch Latency

el

respanse o evant

rasponss interval o

intarrupd
processing

Operating System Concepts — 8" Edition

process made
available

————————— dispatch latansy ———

raal-time
PrOCess

enoacution
—

a—— conflicts ——mll—— dispatch —m

time:

5.70

Silberschatz, Galvin and Gaghe ©2009

o,
=

(_cmd

Java Thread Scheduling

® JVM Uses a Preemptive, Priority-Based Scheduling Algorithm

B FIFO Queue is Used if There Are Multiple Threads With the
Same Priority

e ageel)
SN
'S
{, \) F. by
“d A%

Operating System Concepts — 8t Edition 5.71 Silberschatz, Galvin and Gagne ©2009

N

B
g{ o mpﬁj

=“»>7 Java Thread Scheduling (Cont.)

JVM Schedules a Thread to Run When:

1. The Currently Running Thread Exits the Runnable State
2. A Higher Priority Thread Enters the Runnable State

* Note — the JVM Does Not Specify Whether Threads are Time-
Sliced or Not

AN
! : ”d-w- (-
iy

sl .

Operating System Concepts — 8t Edition 5.72 Silberschatz, Galvin and Gagne ©2009

- ,,,..j =] ..
*‘"’},‘"7 Time-Slicing

Since the JVM Doesn’t Ensure Time-Slicing, the yield() Method
May Be Used:

while (true) {
/I perform CPU-intensive task

Thread.yield();

This Yields Control to Another Thread of Equal Priority

Operating System Concepts — 8t Edition 5.73 Silberschatz, Galvin and Gagne ©2009

& Thread Priorities

Priority Comment
Thread.MIN_PRIORITY Minimum Thread Priority
Thread.MAX_PRIORITY Maximum Thread Priority
Thread.NORM_PRIORITY Default Thread Priority

Priorities May Be Set Using setPriority() method:
setPriority(Thread.NORM_PRIORITY + 2);

,L_,-/‘/.-L-?" 3 *:_\

Operating System Concepts — 8t Edition 5.74 Silberschatz, Galvin and Gagne ©2009

g Solaris 2 Scheduling

= s

class-
global scheduling specific scheduler run
priority order priorities classes queue
highest first real time kernel
A A Q e threads of
real-time
LWPs
Q=
system kernel
Q L e service
threads
Qr
interactive & kernel
time sharing o | 9@ threads of
interactive &
time-sharing
LWPs
Qe
Y L

lowest last

i A8

Operating System Concepts — 8" Edition 5.75 Silberschatz, Galvin and Gagne ©2009

