
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 5: CPU Scheduling

5.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Basic Concepts

 CPU-I/O 버스트주기(burst cycle)
 cycle : CPU 실행(CPU burst) <--> I/O 대기(I/O burst)

 CPU burst 유형

 I/O bound program : 많은짧은 CPU burst 가짐

 CPU bound program : 적은아주긴 CPU burst 가짐

 CPU 스케줄러
 단기스케줄러(short-term scheduler) : ready queue에서선택

FIFO(First-In First-Out)큐

우선순위큐

트리

연결리스트

장기 job scheduling
단기 CPU scheduling <=Focus
중기 swapping : Swap In, Swap Out

5.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Alternating Sequence of CPU and
I/O Bursts

5.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Histogram of CPU-burst Times

Hyperexponential
distribution

I/O bound job

CPU bound job

일반적인 시스템에서,
다수의 짧은 CPU burst와 적은 수의 긴 CPU burst로 구성
=> 어떻게 스케쥴링할 것인가?

5.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

CPU Scheduler
 CPU Scheduler의역할

 Selects from among the processes in memory that are ready
to execute, and allocates the CPU to one of them

 CPU scheduling decision time
 running -> waiting (예:I/O request interrupt)

 running -> ready (예: time run out)

 waiting -> ready (예 : I/O 완료 interrupt)

 halt : non preemptive

 1과 4에서만 Scheduling이발생할경우: nonpreemptive로
충분

 모든경우에서 Scheduling이가능할경우 : preemptive

5.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

CPU Scheduler

 선점(preemptive) 스케줄링

 특수하드웨어(timer)필요

 공유데이타에대한프로세스동기화필요

 비선점(non preemptive) 스케줄링

 특수하드웨어(timer) 없음

 종료또는 I/O까지계속 CPU점유

5.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dispatcher
 Dispatcher의정의

 CPU 스케쥴러에의해선택된프로세스에게 CPU에대한
제어권한을주는모듈

 Dispatcher의역할
 switching context

 switching to user mode

 jumping to the proper location in the user program

 Dispatch latency
 Dispatcher가하나의프로세스를정지하고다른프로세스의
수행을시작하는데까지소요되는시간

5.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dispatch Latency

5.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

CPU Scheduling의성능기준
 이용률(CPU utilization) : 40% ~ 90%

 keep the CPU as busy as possible

 처리율(throughput) : 단위시간당완료된프로세스갯수
 # of processes that complete their execution per time unit

 반환시간(turnaround time) : system in -> system out 걸린시간
 amount of time to execute a particular process

 대기시간(waiting time) : ready queue에서기다린시간
 amount of time a process has been waiting in the ready queue

 응답시간(response time) : 대화형시스템에서첫응답까지의시간
 amount of time it takes from when a request was submitted until the first

response is produced, not output (for time-sharing environment)

5.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Scheduling Algorithms

 FCFS (First-Come First-Served)

 SJF (Shortest-Job-First)

 SRT (Shortest-Remaining-Time)

 Priority Scheduling
 HRN(Highest-Response-ratio Next

 RR (Round Robin)

 Multilevel Queue

 Multilevel Feedback Queue

5.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

 CPU Scheduler

 http://jimweller.com/jim-weller/jim/java_proc_sched/

5.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

First-Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3

P3 3

 Suppose that the processes arrive in the order: P1 , P2 ,
P3
The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24; P3 = 27

 Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

선입 선처리(First-Come, First-Served) 스케줄링

5.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

FCFS Scheduling (Cont.)
Suppose that the processes arrive in the order

P2 , P3 , P1 .

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3

 Average waiting time: (6 + 0 + 3)/3 = 3

 Much better than previous case.

 Convoy effect :
 FCFS 스케쥴링알고리즘(I/O Queue와 Read Queue를가진)에있어서 CPU-

bound 프로세스(CPU를많이차지하는)와 I/O bound 프로세스(상대적으로
CPU를적게사용하는)가있을때 CPU-bound 프로세스로인해 I/O bound
프로세스가짧은 CPU의할당만으로 JOB을완료할수있음에도불구하고,순서를
기다림으로써전반적인시스템성능이떨어지는효과

P1P3P2

63 300

5.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Shortest-Job-First (SJF) Scheduling

 SJF Scheduling의정의
 Associate with each process the length of its next CPU burst. Use these

lengths to schedule the process with the shortest time.

 Two schemes:
 nonpreemptive – once CPU given to the process it cannot be preempted

until completes its CPU burst.

 preemptive – if a new process arrives with CPU burst length less than
remaining time of current executing process, preempt. This scheme is
know as the
Shortest-Remaining-Time-First (SRTF).

최소 작업 우선(Shortest-Job-First) 스케줄링

5.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of SJF(Non-preemptive)

ProcessArrival Time Burst Time

P1 0.0 6

P2 2.0 8

P3 4.0 7

P4 5.0 3

 SJF scheduling chart

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P4 P3P1

3 160 9

P2

24

5.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

SJF

 SJF is optimal – gives minimum average waiting time for a given set
of processes

• long-term scheduling에좋음(프로세스시간의사용자예측치이용)

• short-term scheduling 에는나쁨 : 차기 CPU burst 시간파악이어려워서

• 차기 CPU 버스트시간예측모델필요

5.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Prediction of the Length of the
Next CPU Burst

5.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Determining Length of Next CPU Burst

 Can only estimate the length – should be similar to the
previous one
 Then pick process with shortest predicted next CPU burst

 Can be done by using the length of previous CPU bursts, using
exponential averaging

 Commonly, α set to ½

 Preemptive version called shortest-remaining-time-first

:Define 4.
10 , 3.

burst CPU next the for value predicted 2.
burst CPU of length actual 1.










 1n

th
n nt

  .11 nnn t  

5.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Examples of Exponential Averaging

  =0
 n+1 = n

 Recent history does not count

  =1
 n+1 =  tn

 Only the actual last CPU burst counts

 If we expand the formula, we get:
n+1 =  tn+(1 - ) tn -1 + …

+(1 - )j  tn -j + …

+(1 - )n +1 0

 Since both  and (1 - ) are less than or equal to 1, each
successive term has less weight than its predecessor

5.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of Shortest-remaining-time-first

 Now we add the concepts of varying arrival times and preemption to
the analysis

ProcessAarri Arrival TimeTBurst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

 Preemptive SJF Gantt Chart

 Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 msec

P1 P1P2

1 170 10

P3

265

P4

Preemptive SJF

5.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of Preemptive SJF

Process Arrival Time Burst Time

P1 0.0 8

P2 1.0 4

P3 2.0 9

P4 3.0 5

 SJF (preemptive)

 Average waiting time = ?

5.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

SJF(Shortest-Job-First) 스케줄링
 Job 의실행시간이가장짧은작업을선택

 장점 : 평균대기시간이짧다

 단점 :
 시분할구현이불가능

 Starvation 의가능성

 Job 의실행시간예측이거의불가능

5.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Priority Scheduling

 A priority number (integer) is associated with each process

 The CPU is allocated to the process with the highest priority
(smallest integer  highest priority).
 Preemptive

 nonpreemptive

 SJF is a priority scheduling where priority is the predicted next CPU
burst time.
 Problem  Starvation – low priority processes may never execute.

 Solution  Aging – as time progresses increase the priority of the process.

소문 : 1973년 MIT의 IBM 7094를 폐쇄할때,
1967년의 프로세스가 아직도 수행되지 못한 것을 발견!

NonPreemptive

5.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of Priority Scheduling

ProcessAarri Burst TimeT Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

 Priority scheduling Gantt Chart

 Average waiting time = 8.2 msec

P2 P3P5

1 180 16

P4

196

P1

5.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Round Robin (RR)

 Time Quantum :
 Each process gets a small unit of CPU time (time quantum q), usually

10-100 milliseconds. After this time has elapsed, the process is
preempted and added to the end of the ready queue.

 If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time in
chunks of at most q time units at once. No process waits more
than (n-1)q time units.

 Timer interrupts every quantum to schedule next process

 Performance
 할당되는시간이클경우 FIFO 기법과같아짐

 할당되는시간이작은경우문맥교환및오버헤드가자주발생

5.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of RR with Time Quantum = 4
Process Burst Time

P1 24

P2 3

P3 3

 The Gantt chart is:

 Typically, higher average turnaround than SJF, but better
response
 q should be large compared to context switch time

 q usually 10ms to 100ms, context switch < 10 usec

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

5.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Time Quantum and Context Switch Time
Context Switch Overhead가 1이라고 한다면,

5.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Quantum 의크기
 길이

 고정대가변

 대단히클경우 FIFO 와동일

 작아질수록문맥교환이빈번

 최적치: 대부분의대화형사용자의요구가 quantum 보다짧은시간에
처리될경우

경험적으로, CPU 버스트의 80%는 Quantum 보다 짧아야 한다!

5.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Turnaround Time Varies With
The Time Quantum

80% of CPU bursts should
be shorter than q

5.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

HRN(Highest-Response-ratio Next)

 HRN(Highest-Response-ratio Next) 스케쥴링
 SJF 는짧은 job 을지나치게선호

 실행시간이긴프로세스에불리한 SJF 기법을보완하기위한것으로
대기시간과서비스시간을이용하는기법

 우선순위를계산하여그숫자가가장높은것부터낮은순으로우선순위가부여

 우선순위 =
대기시간 + 서비스시간

서비스시간

NonPreemptive

5.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multilevel Queue

 Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

 Each queue has its own scheduling algorithm,
foreground – RR
background – FCFS

 Scheduling must be done between the queues.
 Fixed priority scheduling; (i.e., serve all from foreground then from

background). Possibility of starvation.

 Time slice – each queue gets a certain amount of CPU time which it can
schedule amongst its processes; i.e., 80% to foreground in RR

 20% to background in FCFS

Preemptive

5.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multilevel Queue Scheduling

5.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multilevel Feedback Queue

 A process can move between the various queues; aging can
be implemented this way

 Multilevel-feedback-queue scheduler defined by the
following parameters:
 number of queues

 scheduling algorithms for each queue

 method used to determine when to upgrade a process

 method used to determine when to demote a process

 method used to determine which queue a process will enter when
that process needs service

5.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of Multilevel Feedback Queue

 Three queues:
 Q0 – RR with time quantum 8 milliseconds

 Q1 – RR time quantum 16 milliseconds

 Q2 – FCFS

 Scheduling
 A new job enters queue Q0 which is served FCFS

 When it gains CPU, job receives 8 milliseconds

 If it does not finish in 8 milliseconds, job is moved to queue Q1

 At Q1 job is again served FCFS and receives 16 additional
milliseconds

 If it still does not complete, it is preempted and moved to queue
Q2

5.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multilevel Feedback Queues

5.36 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multilevel Feedback Queue: Preemptive

 프로세스의특성에따라처리

 짧은작업에우선권

 IO 위주의작업에우선권 (IO 장치를충분히사용)

 CPU-bound / IO-bound 를빨리파악

 CPU bound-job : 계산위주의작업
(점차아래로이동)

 IO bound-job : (상위 level 에서처리)

5.37 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Level 1
(FIFO)

••• ••• Use the
CPU

completion

Level 2
(FIFO)

••• ••• Use the
CPU

completion

Level 3
(FIFO)

••• ••• Use the
CPU

completion

Level n
(round robin)

••• ••• Use the
CPU

completion

•••

preemption

preemption

preemption

preemption

5.38 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thread Scheduling

 Distinction between user-level and kernel-level threads

 When threads supported, threads scheduled, not processes

 Many-to-one and many-to-many models, thread library
schedules user-level threads to run on LWP
 Known as Process-Contention Scope (PCS) since scheduling

competition is within the process

 Typically done via priority set by programmer

 Kernel thread scheduled onto available CPU is System-
Contention Scope (SCS) – competition among all threads in
system

5.39 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multiple-Processor Scheduling

 Asymmetric multiprocessing
 하나의 processor가 scheduling 하므로자료공유가없음

 Symmetric multiprocessing(SMP)
 각 processor가독자적으로 scheduling

 Load sharing : 공동의 Ready Queue 사용가능

 처리기친화성(Processor Affinity)
 CPU core의 cache 활용성을높이기위해같은 core를선호하는것

 Hard Affinity, Soft Affinity

 Load Balancing
 Push : 특정태스크가주기적으로부하검사

 Pull : 쉬고있는프로세서에서다른프로세서의 load를가져옴

5.40 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

NUMA and CPU Scheduling

Note that memory-placement algorithms can also consider
affinity

5.41 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multicore Processors

 Recent trend to place multiple processor cores on same
physical chip

 Faster and consumes less power

 Multiple threads per core also growing
 Takes advantage of memory stall to make progress on another thread

while memory retrieve happens

5.42 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multicore Processors

 There are two ways to multi-thread a processor:
 Coarse-grained multithreading switches between threads only when one

thread blocks, say on a memory read. Context switching is similar to
process switching, with considerable overhead.

 Fine-grained multithreading occurs on smaller regular intervals, say on the
boundary of instruction cycles. However the architecture is designed to
support thread switching, so the overhead is relatively minor.

5.43 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multithreaded Multicore System

5.44 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Hyperthreading : Best Case

일반 : 6 cycle Hyperthreading : 4 cycle

출처 : http://blog.naver.com/jky

2cycle 향상

5.45 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Hyperthreading : Worst Case

일반 : 10 cycle

Hyperthreading : 10 cycle출처 : http://blog.naver.com/jky

향상없음+overhead

5.46 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Virtualization and Scheduling

 Virtualization software schedules multiple guests onto CPU(s)

 Each guest doing its own scheduling
 Not knowing it doesn’t own the CPUs

 Can result in poor response time

 Can effect time-of-day clocks in guests

 Can undo good scheduling algorithm efforts of guests

5.47 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Examples

 Solaris scheduling

 Windows XP scheduling

 Linux scheduling

5.48 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Solaris

 Priority-based scheduling

 Six classes available
 Time sharing (default)

 Interactive

 Real time

 System

 Fair Share

 Fixed priority

 Given thread can be in one class at a time

 Each class has its own scheduling algorithm

 Time sharing is multi-level feedback queue
 Loadable table configurable by sysadmin

5.49 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Solaris Dispatch Table

5.50 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Solaris Scheduling

5.51 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Solaris Scheduling (Cont.)

 Scheduler converts class-specific priorities into a per-thread global
priority
 Thread with highest priority runs next

 Runs until (1) blocks, (2) uses time slice, (3) preempted by higher-priority
thread

 Multiple threads at same priority selected via RR

5.52 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Windows Scheduling

 Windows uses priority-based preemptive scheduling

 Highest-priority thread runs next

 Dispatcher is scheduler

 Thread runs until (1) blocks, (2) uses time slice, (3) preempted by
higher-priority thread

 Real-time threads can preempt non-real-time

 32-level priority scheme

 Variable class is 1-15, real-time class is 16-31

 Priority 0 is memory-management thread

 Queue for each priority

 If no run-able thread, runs idle thread

5.53 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Windows Priority Classes

 Win32 API identifies several priority classes to which a process can
belong
 REALTIME_PRIORITY_CLASS, HIGH_PRIORITY_CLASS,

ABOVE_NORMAL_PRIORITY_CLASS,NORMAL_PRIORITY_CLASS,
BELOW_NORMAL_PRIORITY_CLASS, IDLE_PRIORITY_CLASS

 All are variable except REALTIME

 A thread within a given priority class has a relative priority
 TIME_CRITICAL, HIGHEST, ABOVE_NORMAL, NORMAL, BELOW_NORMAL,

LOWEST, IDLE

 Priority class and relative priority combine to give numeric priority

 Base priority is NORMAL within the class

 If quantum expires, priority lowered, but never below base

 If wait occurs, priority boosted depending on what was waited for

 Foreground window given 3x priority boost

5.54 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Windows XP Priorities

5.55 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Linux Scheduling

 Constant order O(1) scheduling time

 Preemptive, priority based

 Two priority ranges: time-sharing and real-time

 Real-time range from 0 to 99 and nice value from 100 to 140

 Map into global priority with numerically lower values
indicating higher priority

 Higher priority gets larger q

 Task run-able as long as time left in time slice (active)

 If no time left (expired), not run-able until all other tasks use
their slices

 All run-able tasks tracked in per-CPU runqueue data
structure
 Two priority arrays (active, expired)

 Tasks indexed by priority

 When no more active, arrays are exchanged

5.56 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Linux Scheduling (Cont.)

 Real-time scheduling according to POSIX.1b
 Real-time tasks have static priorities

 All other tasks dynamic based on nice value plus or minus 5
 Interactivity of task determines plus or minus

 More interactive -> more minus

 Priority recalculated when task expired

 This exchanging arrays implements adjusted priorities

5.57 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Priorities and Time-slice length

5.58 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

List of Tasks Indexed
According to Priorities

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

End of Chapter 5

5.60 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Algorithm Evaluation

 How to select CPU-scheduling algorithm for an OS?

 Determine criteria, then evaluate algorithms

 Deterministic modeling
 Type of analytic evaluation

 Takes a particular predetermined workload and defines the
performance of each algorithm for that workload

5.61 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Queueing Models

 Describes the arrival of processes, and CPU and I/O bursts
probabilistically
 Commonly exponential, and described by mean

 Computes average throughput, utilization, waiting time, etc

 Computer system described as network of servers, each with queue
of waiting processes
 Knowing arrival rates and service rates

 Computes utilization, average queue length, average wait time, etc

5.62 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Little’s Formula

 n = average queue length

 W = average waiting time in queue

 λ = average arrival rate into queue

 Little’s law – in steady state, processes leaving queue must equal
processes arriving, thus
n = λ x W
 Valid for any scheduling algorithm and arrival distribution

 For example, if on average 7 processes arrive per second, and
normally 14 processes in queue, then average wait time per process
= 2 seconds

5.63 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Simulations

 Queueing models limited

 Simulations more accurate
 Programmed model of computer system

 Clock is a variable

 Gather statistics indicating algorithm performance

 Data to drive simulation gathered via

 Random number generator according to probabilities

 Distributions defined mathematically or empirically

 Trace tapes record sequences of real events in real systems

5.64 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Evaluation of CPU Schedulers
by Simulation

5.65 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Implementation

 Even simulations have limited accuracy
 Just implement new scheduler and test in real systems

 High cost, high risk

 Environments vary

 Most flexible schedulers can be modified per-site or per-system

 Or APIs to modify priorities

 But again environments vary

5.66 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

5.08

5.67 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

In-5.7

5.68 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

In-5.8

5.69 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

In-5.9

5.70 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dispatch Latency

5.71 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Java Thread Scheduling

 JVM Uses a Preemptive, Priority-Based Scheduling Algorithm

 FIFO Queue is Used if There Are Multiple Threads With the
Same Priority

5.72 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Java Thread Scheduling (Cont.)

JVM Schedules a Thread to Run When:

1. The Currently Running Thread Exits the Runnable State

2. A Higher Priority Thread Enters the Runnable State

* Note – the JVM Does Not Specify Whether Threads are Time-
Sliced or Not

5.73 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Time-Slicing

Since the JVM Doesn’t Ensure Time-Slicing, the yield() Method

May Be Used:

while (true) {

// perform CPU-intensive task

. . .

Thread.yield();

}

This Yields Control to Another Thread of Equal Priority

5.74 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thread Priorities

Priority Comment

Thread.MIN_PRIORITY Minimum Thread Priority

Thread.MAX_PRIORITY Maximum Thread Priority

Thread.NORM_PRIORITY Default Thread Priority

Priorities May Be Set Using setPriority() method:

setPriority(Thread.NORM_PRIORITY + 2);

5.75 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Solaris 2 Scheduling

