
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 4: Threads

4.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Threads 개요

 A thread (or lightweight process) is a basic unit of CPU
utilization; it consists of (보유)

- thread ID

- program counter

- register set

- stack space

 A thread shares with its peer threads its(공유)
- code section

- data section

- operating-system resources(files …)

collectively known as a task.

 프로세스 : 중량프로세스(HWP;Heavy Weight Process)
-하나의스레드를 가진작업(task)

4.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Motivation

 Thread들은응용내에서수행

 응용내에서분리된 thread들로구현되는작업들의예

 Update display

 Fetch data

 Spell checking

 Answer a network request

 Kernels are generally multithreaded

4.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Threads 개요

 Process의메모리구조(상세)

(code)

4.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Threads 개요

 Process와 Thread의차이

fork()

Process A

Heap/Stack

Data(Global
Variables)

Code/Text

Process B

Heap/Stack

Data(Global
Variables)

Code/Text

Process A
Thread 1

Heap/Stack

Data(Global
Variables)

Code/Text
Heap/Stack

Process A
Thread 2

pthread_create()

Process Thread

4.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Single and Multithreaded Processes

4.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thread의장점

 Responsiveness

 eg) multi-threaded Web - if one thread is blocked (eg network)
another thread continues (eg display)

 Resource Sharing

 n threads can share binary code, data, resource of the process (files,
crt, …)

 Economy

 creating and context switching thread (rather than a process)
 Solaris: 30배 5배

 Utilization of MP Architectures

 each thread may be running in parallel on a different processor

4.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

쓰레드의이용예 : 웹서버

커널

사용자
영역

커널 영역

웹 서버 프로세스

네트워크 연결

웹 페이지 캐시

작업 스레드

디스패처 스레드

출처: 그림으로 보는 운영체제

4.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multithreaded Server Architecture

4.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Concurrent Execution on a
Single-core System

4.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Parallel Execution on a
Multicore System

4.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

User Threads

 Thread management done by user-level threads library

 라이브러리는커널의지원없이쓰레드의생성과스케쥴링, 관리를지원

 커널을통하지않으므로, 생성과관리가빠르나봉쇄형시스템콜을수행하는
사용자수준의쓰레드는다른쓰레드와함께스케쥴링되지않음

 Three primary thread libraries:

 POSIX Pthreads

 Win32 threads

 Java threads

4.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Kernel Threads

 Supported by the Kernel

 커널수준에서관리되어생성과관리가느리나다른쓰레드와함께스케쥴링될수
있음

 Examples

 Windows XP/2000

 Solaris

 Linux

 Tru64 UNIX

 Mac OS X

4.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

User and Kernel Threads
 Some are supported by kernel

eg) Windows 95/98/NT

Solaris

Digital UNIX

 Others are supported by library
eg) POSIX Pthreads

Mach C-threads

Solaris threads

 Some are real-time threads

Kernel
Threads

User
Threads

4.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multithreading Models

 Many-to-One

 One-to-One

 Many-to-Many

 Two-level Model : Many-to-Many 모델의변형

4.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Many-to-One

 Many user-level threads mapped to single kernel thread

 Examples:

 Solaris Green Threads

 GNU Portable Threads

4.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

One-to-One

 Each user-level thread maps to kernel thread

 Examples

 Windows NT/XP/2000

 Linux

 Solaris 9 and later

4.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Many-to-Many Model
 Allows many user level threads to be mapped to many kernel threads

 Allows the operating system to create a sufficient number of kernel
threads

 Solaris prior to version 9

 Windows NT/2000 with the ThreadFiber package

4.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Two-level Model

 Similar to M:M, except that it allows a user thread to be bound to kernel
thread

 Examples

 IRIX

 HP-UX

 Tru64 UNIX

 Solaris 8 and earlier

4.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thread Libraries

 Thread library provides programmer with API for creating and managing
threads

 Two primary ways of implementing

 Library entirely in user space

 Kernel-level library supported by the OS

 POSIX Pthread

 Wind32 Thread API

 Java thread API

 Linux

4.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Threading Issues

 Semantics of fork() and exec() system calls

 Thread cancellation of target thread

 Asynchronous or deferred

 Signal handling

 Synchronous and asynchronous

4.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Threading Issues – Semantics of fork() and exec()

 Multithread 프로그램에서 fork()를호출한다면, 한개의 thread를생성할것인가?
아니면모든multithread를모두복사해서생성할것인가?

 두개다지원

4.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Threading Issues – Thread Cancellation

 Terminating a thread before it has finished

 예를들면, 여러쓰레드들이데이터베이스를병렬로
검색하다가그중한쓰레드가결과를찾은경우,

 또는웹브라우저에서사용자가 stop을클릭한경우

 Two general approaches:

 Asynchronous cancellation terminates the target
thread immediately

 Deferred cancellation allows the target thread to
periodically check if it should be cancelled

4.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Signal Handling

 Signals are used in UNIX systems to notify a process that a particular event has occurred.

 A signal handler is used to process signals

1. Signal is generated by particular event

2. Signal is delivered to a process

3. Signal is handled

 Options:

 Deliver the signal to the thread to which the signal applies

 Deliver the signal to every thread in the process

 Deliver the signal to certain threads in the process

 Assign a specific thread to receive all signals for the process

4.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Signal Handling

 Signal

 Unix에서특정 Event가일어났음을알리기위해
사용되는단위(예: Windows Message)

 signal handler의처리순서

1. Signal이특정 event에의해생성됨

2. Signal이특정프로세스에전달됨

3. Signal이처리됨

 Process에서의 Signal 처리선택사항
 Signal이적용될특정 Thread에전송

 Process안에있는모든 Thread에전송됨

 Process안의다수 Thread에게전송됨

 그 Process에전달되는모든 Signal을처리할특정
Thread를지정

Signal의예
Synchronous

Devide-by-zero,
illegal-memory-access

4.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thread Pools

 작업을대기하는다수의 Thread를미리생성해놓는 Pool

 Advantages:

 속도 : 보통새로운 Thread를생성하는것보다존재하는
Thread를사용하므로다소빠름

 시스템자원할당의한계설정 : Allows the number of
threads in the application(s) to be bound to the size of
the pool

4.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thread Pools

 Java provides 3 thread pool architectures:

1. Single thread executor - pool of size 1.

2. Fixed thread executor - pool of fixed size.

3. Cached thread pool - pool of unbounded size

4.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Scheduler Activations
 Scheduler Activation

 Thread library와 Kernel Thread의통신방법

 This communication allows an application to maintain the correct number kernel
threads

 LWP 자료구조

 M:M and Two-level model들은다수의 Kernel

4.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

운영체제사례

 Solaris에서 Thread와 Process의관계

4.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

운영체제사례

 Unix와 Solaris의 Thread 지원 Process의비교

Solaris replaces
the processor

state block with a
list of LWPs

4.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

운영체제사례

 Solaris에서의 Thread 모델

4.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

운영체제사례

 Linux에서의 Process/Thread 모델

4.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

운영체제사례: Windows XP Threads
 Implements the one-to-one mapping

 Each thread contains

 A thread id

 Register set

 Separate user and kernel stacks

 Private data storage area

 The register set, stacks, and private storage area are
known as the context of the threads

4.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

운영체제사례: Windows XP Threads

4.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

운영체제사례: Linux Threads
 Linux refers to them as tasks rather than threads

 Thread creation is done through clone() system call

 clone() allows a child task to share the address space of the parent
task (process)

4.36 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thread Programming : Windows(1)
#include <stdio.h>
#include <string.h>
#include <windows.h>
#include <process.h>

#define rowA 3
#define colA 4
#define rowB 4
#define colB 5

typedef struct Matrix
{
int matrixA[rowA][colA];
int matrixB[rowB][colB];
int matrixC[rowA][colB];
}Matrix;
unsigned long thread0, thread1, thread2;
unsigned __stdcall Thread0(void *pParam)//스레드 함수
{
int nTemp=0, j, k;
Matrix *mx = (Matrix*)pParam;

for (j = 0; j < colB; j++)
{
for (k = 0; k < colA; k++)
{
nTemp += (mx->matrixA[0][k] * mx->matrixB[k][j]);
}
mx->matrixC[0][j] = nTemp;
nTemp = 0;

}
thread0=1;
return 0;
}

4.37 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thread Programming : Windows(2)
unsigned __stdcall Thread1(void *pParam)//스레드 함수
{
int nTemp=0, j, k;
Matrix *mx = (Matrix*)pParam;

for (j = 0; j < colB; j++)
{
for (k = 0; k < colA; k++)
{
nTemp += (mx->matrixA[1][k] * mx->matrixB[k][j]);
}
mx->matrixC[1][j] = nTemp;
nTemp = 0;

}
thread1=1;
return 0;
}

unsigned __stdcall Thread2(void *pParam)//스레드 함수
{
int nTemp=0, j, k;
Matrix *mx = (Matrix*)pParam;

for (j = 0; j < colB; j++)
{
for (k = 0; k < colA; k++)
{
nTemp += (mx->matrixA[2][k] * mx->matrixB[k][j]);
}
mx->matrixC[2][j] = nTemp;
nTemp = 0;

}
thread2=1;
return 0;
}

행렬곱셈
[3 * 4] * [4 * 5] -> [3*5]에서
[1*5] [1 * 5] [1 * 5]쓰레드를통해
[3*5] 행렬계산

4.38 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thread Programming : Windows(3)
void main()
{

Matrix mx;

int i, j;
for(i = 0; i < rowA; i++)
{
for(j = 0; j < colA; j++)
mx.matrixA[i][j] = 1;

}

for(i = 0; i < rowB; i++)
{
for(j = 0; j < colB; j++)
mx.matrixB[i][j] = 2;

}
_beginthreadex(NULL, 0, Thread0, &mx, 0, NULL);//스레드 시작
_beginthreadex(NULL, 0, Thread1, &mx, 0, NULL);//스레드 시작
_beginthreadex(NULL, 0, Thread2, &mx, 0, NULL);//스레드 시작
while(1)
{
if(thread0 && thread1 && thread2)
{
for(i = 0; i < rowA; i++)
{
for(j = 0; j < colB; j++)
printf("%d ", mx.matrixC[i][j]);
printf("\n");

}
break;
}

}
}

4.39 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

예제 : Thread Echo Server
/***/
/*** echo-thread.c ***/
/*** ***/
/*** An echo server using threads. ***/
/***/
#include <stdlib.h>
#include <errno.h>
#include <unistd.h>
#include <string.h>
#include <sys/wait.h>
#include <sys/socket.h>
#include <resolv.h>
#include <arpa/inet.h>
#include <pthread.h>

void PANIC(char* msg);
#define PANIC(msg) { perror(msg); exit(-1); }

/*--*/
/*--- Child - echo servlet ---*/
/*--*/
void* Child(void* arg)
{ char line[100];

int bytes_read;
int client = *(int *)arg;

do
{

bytes_read = recv(client, line, sizeof(line), 0);
send(client, line, bytes_read, 0);

}
while (strncmp(line, "bye\r", 4) != 0);
close(client);
return arg;

}

4.40 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

예제 : Thread Echo Server

/*--*/
/*--- main - setup server and await connections (no need to clean ---*/
/*--- up after terminated children. ---*/
/*--*/
int main(void)
{ int sd;

struct sockaddr_in addr;

if ((sd = socket(PF_INET, SOCK_STREAM, 0)) < 0)
PANIC("Socket");

addr.sin_family = AF_INET;
addr.sin_port = htons(9999);
addr.sin_addr.s_addr = INADDR_ANY;
if (bind(sd, (struct sockaddr*)&addr, sizeof(addr)) != 0)

PANIC("Bind");
if (listen(sd, 20) != 0)

PANIC("Listen");
while (1)
{ int client, addr_size = sizeof(addr);

pthread_t child;

client = accept(sd, (struct sockaddr*)&addr, &addr_size);
printf("Connected: %s:%d\n", inet_ntoa(addr.sin_addr), ntohs(addr.sin_port));
if (pthread_create(&child, NULL, Child, &client) != 0)

perror("Thread creation");
else

pthread_detach(child); /* disassociate from parent */
}
return 0;

}

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

End of Chapter 4

4.42 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pthreads
 May be provided either as user-level or kernel-level

 A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization

 API specifies behavior of the thread library, implementation is up to development of the library

 Common in UNIX operating systems (Solaris, Linux, Mac OS X)

4.43 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pthreads Example

4.44 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pthreads Example (Cont.)

4.45 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Win32 API Multithreaded C Program

4.46 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Win32 API Multithreaded C Program (Cont.)

4.47 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Java Threads
 Java threads are managed by the JVM

 Typically implemented using the threads model provided by underlying OS

 Java threads may be created by:

 Extending Thread class

 Implementing the Runnable interface

4.48 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Java Multithreaded Program

4.49 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Java Multithreaded Program (Cont.)

